» -

p =y ad g = g Lo ;
EQ 1aio Ihfﬂ!’ n Cat. No. 62-2075

~ More TRS-80
~ Assembly Language
. Programming

An Advanced Look at Challenging, Efficient Assembly-Language
Programs— A Valuable Tool for A Variety of Applications

U.S.A. $5.95

MORE
TRS-80
ASSEMBLY-LANGUAGE
PROGRAMMING

by

William Barden, Jr.

Radio .rhaek

A DIVISION OF TANDY CORPORATION

©1982 by Radio Shack, a division of Tandy
Corporation, Fort Worth, Texas 76102

FIRST EDITION
FIRST PRINTING

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial content, in
any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number:
Library of Congress Catalog Card Number:

Printed in USA

Preface

This book is a follow-up to Radio Shack’s book TRS-80
Assembly-Language Programming. In that book we
described the architecture of the Z-80 microprocessor used in
the TRS-80, presented the instruction set and addressing
modes, and gave some examples of common
assembly-language programming operations.

More TRS-80 Assembly-Language Programming builds on
the material found in the previous book by taking an even
more practical look at TRS-80 Model I and III
assembly-language programming. It answers such
questions as “How do I use the Disk Editor/Assembler?,”
“Where in memory should I put an assembly-language
program?,” “What about embedded machine-language
code?” and “How do I go about writing and implementing a
large assembly-language program?”

We have organized the material in this book into four
sections. In the first section, “Using Assembly Language,”
we review some of the general material we covered in the
earlier book and then describe the practicalities of
assembling programs in the TRS-80. Among the
practicalities we discuss are the operation of both the
cassette-based Editor/Assembler and Disk Editor/Assem-
bler. Moving along, we get into the general approaches to
executing assembly-language programs, both “stand-alone”
assembly-language programs and the “embedded in BASIC”
machine-language approach.

Section II, “Assembly-Language Techniques,” describes
four types of processing that can be implemented in
assembly language — “number-crunching;” working with
character data; table operations, including sorting and
searching; and graphics display processing. We present each
type of processing first from a general design standpoint —
and then we put that theory into practice, with assembly-
language code to illustrate the methods of solving the
problems of each type of processing.

Because of the unique structure and design of the TRS-80
hardware there are a number of assembly language
techniques that are peculiar to this system. Along that line,
we take two more chapters in this section to describe cassette
input/output, parallel printer operation, and disk file
manage operations. Some of you may be especially
interested in the material on disk file operations since
assembly-language calls may be made directly to TRSDOS
disk file manage routines to read and write random files and
perform other operations.

The third section, “Larger Assembly-Language Projects,”
contains complete listings of two large assembly-language
programs. The first of these is a Morse Code Program
(MORG), which transmits random or defined Morse code
messages through the cassette output port at speeds of 5 to
60 words per minute. The second program is an experiment
in artificial intelligence — a tic-tac-toe learning program
that starts off being not very bright but learns how to play
the game until it is virtually unbeatable. Neither program
could be implemented in BASIC to execute in “real-time.”
Also in this section we discuss the general approach in
writing large programs in assembly-language along with an
actual case study from a TRS-80 software house.

The fourth and final section contains the appendices
covering the Z-80 instruction set grouped in functional order
and Z-80 operation code listings.

As the author, I hope you find the material in this book a
useful supplement to TRS-80 Assembly-Language Pro-
gramming, but L also hope you will be able touseitinitsown
right. Assembly-language programs are fast, efficient, and
challenging, and help to make the TRS-80 even more of a
valuable tool for all types of programming applications.

To my wife Janet, for her encouragement

Table Of Contents
More TRS-80 Assembly-Language
Programming
Section I: Using Assembly Language

Chapter One

ASSEMBLY-LANGUAGE BASICS
A Typical Assembly Program — How the DECBIN
Subroutine Works — DECBIN—Detailed Analysis

Chapter Two

ASSEMBLERS AND ASSEMBLING — EDTASM
A Look at EDTASM — Source Line Syntax —

Constants — Pseudo-Operations —
Chapter Three
ASSEMBLERS AND ASSEMBLING —

DISK ASSEMBLER

Comparison between EDTASM and the Disk
Assembler — Disk Files for the Disk Assembler —
Using the Editor for Source Files — Relocatable
Object File Assembly — Macro Capability —
Pseudo-Ops for Program Sections and Conditional
Assembly — Pseudo-Ops for Listing Format —
Using the Disk Assembler — Loading the Object
Modules to Produce a Command File

Chapter Four

LOADING, EXECUTING, AND DEBUGGING
ASSEMBLY-LANGUAGE PROGRAMS
EDTASM System Tapes — System Considerations
for EDTASM Object Files — Debugging with
T-BUG — Disk Assembler Files — Debugging with
DEBUG — Interfacing Assembly-Language and
BASIC Programs

37

53

75

Chapter Five

EMBEDDED MACHINE CODE IN BASIC
Relocatable Code — Embedded Machine Code by
DATA to Memory — Embedded Machine Code by
CHRS$ String — DATA Values and Dummy Strings
— DATA Values and Array Storage — Passing
Arguments and Multiple Subroutines 99

Section II: Assembly-Language Techniques

Chapter Six

NUMBER CRUNCHING
Addition and Subtraction — Multiplies and Divides
— Signed vs. Unsigned Multiplies and Divides —
Overflow Limits — Random Number Generation —
Towards Infinite Precision 113

Chapter Seven

WORKING WITH CHARACTER DATA
Keyboard Operation and Scanning — A Typical
Keyboard Subroutine — Input Subroutines —
Display of Characters — Displaying a Message —
Displaying an Input Character — Scrolling —
Conversion From ASCII Decimal to Binary —
Converting From Binary to Decimal ASCII 135

Chapter Eight

WORKING WITH TABLES
What are Tables? — Fixed Length Entry/Fixed
Length Table — Fixed Length Entry/Variable
Length Table — Variable Length Entry/Variable
Length Table — Jump Tables — Scanning —
Ordered Tables — Searching — Sorting 159

Chapter Nine

GRAPHICS DISPLAY PROCESSING
Graphics Characteristics — Random vs. Character
Position Graphics — Character-Oriented Graphics
— Drawing Random Points — Animation — Line
Drawing 185

Chapter Ten

CASSETTE OUTPUT, MUSIC, and PARALLEL
PRINTERS
Input/Output Programming — Z7-80 and TRS-80
Input/Output — Parallel Printer Operation —
Cassette I/0 211

Chapter Eleven
DISK I/0O IN ASSEMBLY LANGUAGE
Diskette and Disk Characteristics — Disk Drives —
The Disk Controller — TRSDOS Disk Organization
— Device Control Blocks — TRSDOS I/O Calls 235

Section III: Larger Assembly-Language Projects

Chapter Twelve

ASSEMBLY-LANGUAGE DESIGN, CODING, AND
DEBUGGING
The Inception Phase — Research — The
Preliminary Specification — Program Design —
Coding — Desk Checking — Debugging —
Comprehensive Checking — Final Clean-Up — No
Resemblance to Programmers Living or Dead 265

Chapter Thirteen
A MORSE CODE GENERATOR PROGRAM (MORG)

General Specification — Operation — General
Design — Implementation — Program Description
— Using This Program 285

Chapter Fourteen

TIC-TAC-TOE LEARNING PROGRAM
General Specifications — Operation — General
Design — Algorithms for playing the Game —
Implementation — Program Description — Using

This Program 333

Appendices
Appendix 1. Z-80 INSTRUCTION SET 411
Appendix IL. Z-80 OPERATION CODE LISTINGS 415

SECTION I
Using Assembly Language

Chapter One
Assembly-Language Basics

In this chapter we’ll review some assembly-language
basics. If you want a more comprehensive treatment, refer
to TRS-80 Assembly-Language Programming (Radio
Shack 62-2006). If you’ve never experimented with
assembly language, review some of the material presented
in the previous book (especially the “General Concepts”
section). An alternative is to read this chapter thoroughly
and pay close attention to assembly-language examples
we've included later in the book.

The TRS-80 uses the built-in instruction set of the Z-80A
microprocessor. The Z-80A is a third-generation micro-
processor chip that is truly a “computer on a chip.” Using
assembly language is mainly a matter of learning both the
instruction set of the Z-80A microprocessor and the skills
needed in putting together those instructions to form
programs.

There are over 700 separate instructions for the Z-80 with
a number of different addressing modes. Each of the
instructions, however, performs a simple function and is

9

easy to understand by itself. Furthermore, many of the
instructions are similar in nature, and understanding how
one specific instruction works might mean that you can
easily unravel 23 similar ones!

The instruction set of the Z-80 is provided in Appendix I
with the instructions grouped according to logical
function. If you want to find an instruction that will load
the A register in the Z-80 with a memory operand, for
example, you could look under “Loads” and then under “A
Load Memory Operand” to find the instructions that
perform this function. Many times you'll find a number of
different instructions can accomplish the same function.

Appendix II gives the actual format of each instruction.
Normally, you will not be concerned with the format, as
the Assembler will automatically translate a mnemonic
for the instruction into the machine-language format.

It’s possible to translate a string of assembly-language
instructions by hand into the equivalent bits shown in the
instruction formats of Appendix II. If you did this, the
result would be called a machine-language program.
However, there are a number of excellent automatic
assembler programs that Radio Shack provides that
eliminate such tedious hand work. One of these is the
cassette-based Editor/Assembler which takes symbolic
source lines and translates them into machine-language
code. The second is the disk-based Editor/Assembler, a
more advanced version of an assembler. We’ll look at both
assemblers in this book and point out any differences that
occur between them.

A Typical Assembly Program

One listing is said to be worth a thousand words . . . Let’s
take a look at a typical assembly-language program and
scrutinize it in some detail to review some of the things we
should know before we go on to advanced topics.

The assembly-program listing is shown in Figure 1-1. The
program itself is designed to convert a character string

10

representing a decimal value of 0-65535 into an equivalent
16-bit binary value. This program could be used, for

example, to convert a keyboard input to binary for
processing.

08970 ;##saeanepECIMAL TO BINARY CONVERSION SUBROUTINEG®wascaas

08980 ;# CONVERTS UP TO SIX ASCII CHARACTERS REPRESENTING #®
08990 ;& DECIMAL NUMBER TO BINARY. MAXIMUM VALUE IS 65535. &
09000 ;® ENTRY: (HL)=BUFFER CONTAINING ASCII e
09010 ;*® (B)=NUMBER OF CHARACTERS e
09020 ;% EXIT: (HL)=BINARY # 0-65535 °
09030 ;@ NZ IF INVALID ASCII CHARACTER OTHERWISE 7 #
09040 ;® ALL REGISTERS SAVED EXCEPT A,HL s
09050 ;

8590 €5 09060 DECBIN PUSH BC ;SAVE REGISTERS

8591 DS 09070 PUSH DE

8592 DDES 09080 PUSH IX

8594 DD210000 09090 LD IX,0 +SET RESULT

8598 DD29 09100 DECO4O ADD IX,IX ; INTERMEDIATE®2

8594 DDES 09110 PUSH X

859C DD29 09120 ADD IX,IX L

859E DD29 09130 ADD IX,IX ;88

8540 D1 09140 POP DE ; #2

8541 DD19g 09150 ADD IY,DE 1810

8543 TE 09160 LD A, {HL) ;GET CHARACTER

85A4 D630 09170 SuB 30H ; CONVERT

8546 FAB685 09180 JP M,DECOT0 ;GO IF LT "o®

8549 FEOA 09190 93 10 ;TEST FOR GT "gn

B85AB F2B685 09200 JP P,DECOTO ;60 IF GT n"gm

B5AE SF 09210 LD E,A iNOW IN E

85AF 1600 09220 LD D,0 ;NOW IN DE

85B1 DD19 09230 ADD IX,DE 1 MERGE

85B3 23 09240 INC HL

85B4 10E2 09250 DJNZ DECO4 O ;GO IF MORE

8586 78 09260 DECOTO0 LD A,B ;COUNT TO A

85B7 BT 69270 OR A $SET OR RESET Z FLAG

85B8 DDES 09280 PUSE IX ;RESULT TO HL

85BA E1 09290 POP HL

85BB DDE1 09300 POP X ;RESTORE REGISTERS

85BD D1 09310 POP DE

85BE C1 09320 POP BC

85BF C9 09330 RET s RETURN

Figure 1-1. Typical Assembly-Language Program

This collection of assembly-language statements makes up
a subroutine, a structure very similar to a BASIC sub-
routine. It is located at one place in memory and can be
called as often as necessary.

There are three main segments of the assembly-language
program: the assembly-language source code, the edit
line numbers and the assembly-language machine code.

Figure 1-2 shows the assembly-language source code
portion of the listing. The source code consists of symbolic
lines similar to BASIC statement lines. In general, each
line represents one assembly-language instruction written
in mnemonic form. The mnemonic of the instruction is

11

merely a shorthand way to express the instruction. It’s
much simpler to write DEC DE than to write “take the
contents of the DE register, subtract one, and put the
results of the operation back into DE”.

OP-CODE

FIELD OPERAND FIELD

LABEL
FIELD

COMMENTS FIELD l

. wsssuesEDECIMAL TO BINARY CONVERSION SUBROUTINE#R=asRassx
CONVERTS UP TO SIX ASCII CHARACTERS REPRESENTING *

&
DECIMAL NUMBER TO BINARY. MAXIMUM VALUE IS 65535. °
5 ENTRY: (HL)=BUFFER CONTAINING ASCII #
e (BY=NUMBER OF CHARACTERS ®
EXIT: (HL)=BINARY # 0-65535
NZ IF INVALID ASCII CHARACTER OTHERWISE z *®
ALL REGISTERS SAVED EXCEPT A,HL B
ECBIN PUSH BC :SAVE REGISTERS

PUSH DE

PUSH 1X

LD 1X.0 $SET RESULT
ECO40 ADD 1%, IX s INTERUEDIATE®2

PUSH IX

ADD IX,IX sy

ADD IX,IX ;28

POP DE ;%2

ADD 1X%,DE (%10

LD A, (HL) {GET CHARACTER

SuB 308 ; CONVERT

Jp +4,DECOT70 1GO IF LT 70"

cp 10 ;TEST FOR GT "g"

Jp P,DECOTO :GO IF GT "9"

LD E,A (NOW IN E

LD D,0 ;NOW IN DE

ADD 1X,DE ;MERGE

INC HL

DINZ DECO40 ;GO IF MORE
DECOTC LD A,B {COUNT TO A

OR A ;SET OR RESET Z FLAG

PUSH X {RESULT TO HL

POP HL

POP IX :RESTORE REGISTERS

POF DE

POP BC

RET {RETURN

Figure 1-2. Source Code

There are four fields in each assembly-language source
line.

The second field is the mnemonic representing the
instruction to be used. Each of the 700 or so instructions
has a predefined mnemonic that the assembler recognizes
as a valid instruction. As the mnemonic defines an oper-
ation code for the instruction, this field is often referred
to as the op-code field.

The third field in the source line is the operand field. The
number of operands for instructions varies from none to
three. The RET instruction shown in the figure, for

12

¢

o et

e

example, requires no operands, while one of the LD
instructions requires two — one specifying the register
pair that points to a memory address { (HL) ¥, and a
second specifying the register to be loaded with the
contents of that memory address (A}, The complete
op-code and operand form of the instruction is
LD As(HL),

The fourth field of the instruction is an optional com-
ments field. This field is used solely for comments as-
sociated with the instruction, similar to the “REMarks”
statement of BASIC. A source line is a comment line when
the line starts with a semicolon (). The comments field
must always start with a semicolon.

The remaining field of the source line is the optional label
field. We use this field to define a label for the instruction,
which can then be referenced by another instruction in the
program. The line DEC0O40 ADD I¥,IX, for example, has
the label DECO40 for the ADD instruction. A later
instruction, DJNZ DECO40, causes a jump to DECO040 if
there is a zero result in the B register. The use of symbolic
names for instruction locations makes it unnecessary to
keep track of the absolute locations for each instruction in
memory. Keeping track of absolute locations is a
burdensome chore, although it can be done in
machine-language programming, which does not use an
assembler. The label may or may not be suffixed by a
colon, depending upon the assembler.

The second part of the assembly listing, shown in Figure
1-3, is the editing of line numbers. The source code lines
are entered from the keyboard to an editor program,
which is usually part of an Editor/Assembler package. The
Editor uses line numbers for each of the source lines with
the line numbers in ascending sequence. The typical line
number increment is 10, so that the line numbers are 100,
110, 120, etc. Using the Editor, lines may be modified,
inserted, or deleted. Characters within the lines may also
be processed.

13

2 DDES

4 DD210000

. Db2y]
DDES

It’s important to note that the edit line numbers are used
for editing purposes only and are not used in the program
(as they are in BASIC) to refer to other source lines. The
output of the Editor is an assembly-language source file,
a collection of source lines that represent a source pro-
gram. This file is stored on cassette tape or disk, depend-
ing upon the Editor/Assembler.

The third part of the assembly-language listing is shown
in Figure 1-4. This is the machine code portion of the
assembly. When the Assembler portion of the Editor/As-
sembler processes the source file, the Assembler trans-
lates the source lines into the corresponding machine code
form of the instruction. For example, the Assembler
translates the OR A . . . instruction into a hexadecimal
“B7”. The hex B7 corresponds to a binary 10110111, which
the Z-80 microprocessor will decode as an OR instruction
that ORs the contents of the A register with the A register.
The Assembler automatically translates the symbolic
source lines into a form that the Z-80 processor can
recognize, binary ones and zeroes.

14

MEMORY LOCATION
FOR INSTRUCTION

DATA REPRINTING
rmsmucnml
08970 ;eR¥ERSxELECIMAL TO BINARY C

08580 'CONVERTS

8590 €5
8591 D5
8592 DDES
8594 DD210000
8598 DD29
8594 DDES
859C DD29
859E DD29
8540 D1
8541 DD19
8543 7E
8544 D630
8546 FAB68S
B5A9 FEOA
65AB F2B685
85AE SF
854F 1600
8581 DD19
85B3 23
85B4 10E2
85B6 T8
8587 B7
85B8 DDES
85BA E1
85BB DDE1
85BD D1
85BE C1
85BF C9

Figure 1-4. Machine Code

The second column of Figure 1-4 is the hexadecimal
representation of all the assembly source lines. As there
are two hexadecimal digits per 8 bits (one byte), each pair
of hex digits represents one byte of the instruction. Z-80
instructions may be one, two, three, or four bytes long, as
you can see from the figure. Normally, the assembly-lan-
guage programmer should know the rudiments of binary
and hexadecimal representation. If you're not familiar
with binary or hexadecimal numbers, spend a few hours
reviewing a basic text on the subject.

Hints and Kinks 1-1
Binary/Hexadecimal Representation

Hexadecimal is just a shorthand way to represent
binary numbers. To convert from binary to hex.

15

group the binary number into 4-bit groups and
then convert to a hex digit 0-9, A, B, C. D, E, or F.

Binary 0011 1011 ,6 1001 111l

Hex 3 B S F “

To convert back, perform the operation in
reverse.

To convert fromdecimal to binary, divide by two
and arrange the remainders in reverse order.

d Rl
21 Rl

23 R
2[6 Rl ¥ LIB1BI
213 Rl
20271 Ry
2[54 Rl
21109

Use the same scheme to convert fromdecimal to
hexadecimal.

To convert from binary to decimal, use '‘double-

deppte- " g0 1%2= 2+1= 3
3x)= 6+@—_ 6
6x2: 12+1= 13
13%27 26+ 1= 27
27x0= Shj= 54
54x2:108+ =109

Use the same scheme to convert fromhex to
decimal.

I know —Right now you're saying, ‘'If
God had wanted man to count in hexadecimal, he
would have given him 16 fingers . . . v
You'll be surprised, however, at howeasy it is
to work in binary or hex after some practice.
Soon you'll be balancing your checkbook in it!
Hmmmmm . . . Maybe that would help mine

16

The first column of the machine code portion, which is in
hexadecimal notation, represents the location of the
machine-code data in memory. The instruction PUSH BC,
for example, has been assembled at location 8590H. If you
were to take the machine code from column two and enter
it into RAM (Random Access Memory) starting at location
8590H (by using T-BUG or DEBUG), the 48 bytes from 8590H
to 85BFH would represent the machine-language program
for the DECBIN subroutine. The location column often
represents the absolute location of the instructions,
although with the Disk Editor/Assembler it may represent
the relative locations from the start (we’ll see how in a
later chapter).

How the DECBIN Subroutine Works

Now let’s take a look at the operation of DECBIN so we can
review some basic concepts about Z-80 architecture,
instructions, and addressing. Before we wrote DECBIN, we
knew the functions it had to perform — we wanted to
write some assembly-language code that would take a
given ASCII string representing a decimal number and
convert it to binary form.

Subroutines

It’s convenient to write this code as a subroutine. A sub-
routine is nothing more than a collection of instructions
that performs a particular function. Subroutines are
handy — rather than write the instructions each time we
need the function, we define the subroutine once so it
occupies one particular area in memory, and then we call
it up whenever we need that function in the program. This
little convenience saves memory space since the code only
occupies one point in memory. It also saves us the devel-
opment time of writing the source lines over and over.
Assembly-language subroutines are functionally identical
to BASIC subroutines.

Subroutines also are important for another reason. They
break the program up into a number of small modules that
perform well-defined functions. This pattern of modules

17

makes the entire programming task much easier than
writing a large amount of in-line code.

We can call the DECBIN subroutine by a CALL instruction 4
that is very similar to a BASIC GOSUB statement. The CALL ¢
instruction jumps to the subroutine but saves the return
address of the next instruction after the CALL. When the
RET, or RETurn instruction in DECBIN is finally executed
at completion, the return address of the instruction after
the CALL is retrieved or popped from the memory stack,
and a return is made.

The appearance of the CALL might be:
NAME CALL DECBIN $THIS IS THE CALL TODECBIN
LD Ayl iRETURN HERE

L]

+

+

Stack Operations

The memory stack is an area of RAM set aside for certain
functions. Whenever a CALL instruction is executed, the
current address of the Z-80 program counter register is
saved in the stack area; the address is “pushed” onto the
stack as shown in Figure 1-5. Whenever a RET instruction
is executed, the return address is retrieved, or “popped”
from the stack and put into the program counter to cause a
return to the instruction following the CALL. The stack is
also used as temporary storage, as we shall see. The stack
area set aside for this function and others is typically 100
bytes.

18

AN
LOW MEMORY
a A la /4
oo & F ¥
BYTES OR 50} STACK
BUILDS
DOWN
CURRENT ADDRESS
T AS A RESULT OF -1
CALL INSTRUCTION
HIGH MEMORY
’_,,__—-\/\//

Figure 1-5. Stack Action for a CALL/RET

ALWAYS POINTS
TO “TOP OF STACK”

Hints and Kinks 1-2
Stack use

It's easy to remember how the stack works if
you think of a dinner plate stacker in a
restaurant. (No, not Ed, the part time counter
man — the mechanical one!) As a plate (8 bits
of data) is placed on the stack, the stack is
pushed down. As a plate {data) is taken off
the stack, the stack pops up. Every time a
CALL is made, two bytes of data, making up two
address bytes, are pushed onto the stack.
Every RETurn pops the two bytes. PUSH and POP
instructions operate similarly.

HiIGH MEMORY PUSH poP
STACK POINTER T
REGISTER i

LOW MEMORY

To set the stack pointer, perform the *'LD
SPHHXKXY Y instruction, where XXXX 1s some
(usually) high memory location, as the stack
'ibuilds down''.

Just as every he must have a she, every PUSH
must have a POP and every CALL must have a
RET! Otherwise stack will ‘''gobble up' memory
below it as it digests byte after byte,
pushing data further and further down!

20

Before we can call the DECBIN subroutine, we must set up
the subroutine arguments in preparation for the sub-
routine action. The arguments are what might be popu-
larly known as the “gozintas” and the “gozoutas.” In this
subroutine, we’re entering with a pointer to a string of
ASCII characters representing decimal digits 0-9 and the
number of characters in the string. That’s the “goes into.”
We're exiting (the “goes out of”) with a binary number
from 0 to 65535 representing the converted result. Also, if
we detect an invalid ASCII character in the string, such as
the one in “123$56” — we want to know about it. In the
case of “123$56”, the Z flag in the Z-80 is reset (an “NZ”
condition).

When we started writing the subroutine, we had to do
some thinking about how to pass the arguments. One of
the arguments is a pointer to a string of ASCII characters.
The characters are identical to the ones we would get by
typing in characters from the TRS-80 keyboard. Each
character takes up one byte, as shown in Figure 1-6. We
would like to convert the string of characters into the
equivalent binary number. Since we must put some limit
on the number to be converted, we chose 65535, a number
that can be held in 16 bits, which is the size of a Z-80
register pair. It seems convenient, then, to return the
result in a Z-80 register pair of 16 bits.

21

1
LOW MEMORY
BYTE O ASCII 1>

1 ASCII “2”

2 ASCIt <3 ASCH STORAGE 4

s ASCIl “4” IN MEMORY

4 ASCIt <5”

5 ASCIHI “6”
HIGH MEMORY

//W/

Figure 1-6. ASCII Character Storage

22

Hints and Kinks 1-3
ASCII

ASCII is simply a standardized 7-bit code used
for uniform representation of character data.
See the tables in many of the TRS-80 manuals.
All BASIC strings are stored in ASCII. Data to
be displayed on the screen or line printer
must first be converted to ASCII by software.

Fortunately the ASCII codes for 0-9 and A-Z
and a—-z run in sequence, making it much easier
to convert. This is not always true of
character codes. Some peripherals have codes
based on type-ball position, the phase of the
moon, or both!

Passing Arguments

How would we pass the ASCII string to the subroutine?
With a limit of 65535, we would have a maximum of 5
bytes. Although we could pass these five bytes in five Z-80
registers (or 2% register pairs), we’ll choose instead to
pass a pointer to the memory locations that contain the
string. This pointer value can be held in 16 bits, as any
TRS-80 memory location can be expressed as a value of 0
through 65535.

The number of bytes in the string may vary from 1 to 5;
this is also an argument that must be passed to the
DECBIN subroutine. As this is a small value, it can be
passed in a single Z-80 register of 8 bits.

Z-80 Registers

Any of the general purpose (A, B, C, D, E, H, or L) registers or
register pairs (BC, DE, HL) could have been chosen to hold
the arguments. We have chosen HL to hold the string
pointer and B to hold the count — since HL is convenient
because many of the instructions use the HL register pair
as a register indirect pointer to memory locations. B is

23

conveniently used, as a special DJNZ instruction uses B as
a counter. A typical CALL to the DECBIN might now look

like this:
NAME1

24

LD

LD

HL sBUFFER

B:S

CALL DECBIN

iADDRESS OF
STRING BUFFER

i# OF CHARACTERS

sCONVERT ABCII
TO BINARY

iRETURN HERE

Hints and Kinks 1-4
Z—-80 Registers

These are the Z2-80 registers accessible to
TRS—80 assembly-language programmers. A is
used for many arithmetic operations. The HL
register pair is used as a !'‘16-bit
accumulator'' for 16-bit arithmetic.
Selection of either AF or AF' is done by

A AFsAF’. Seliection of either B~L or B'-L'
is done by EXX.

Seem like it is easy to get confused about
which set of registers, prime or non-prime you
are using? You bet. Much TRS-80 software uses
only one set. Typically the prime set would be
used for interrupt processing. There is no
reason that you should not use both sets,
however, as long as you keep track of which
set is '‘current.'’

e BITS 1o BITS

AEGISTER PAIRS 8 BITS 8 BITS 88ITS 8BTS

AF A F A’ F

BC C B’ c'

B
GENERAL - PURPOSE
DE D E D’ E’ REGISTER (ONLY
ONE S¢€T ACTIVE,
EITHER A-L OR A'-L')
H

HL L H’ v/
1 X INDEX REGISTER (USED N INDEXED ADDAESSING)
Y INDEX REGISTER(“ ~ " ")
p PROGRAN COUNTER
c (KEEPS TRACK OF CURRENT INSTRUCTIONY
STACK POINTER
SP {POINTS TO TOP OF STACK AREA)
INTERRUPT REGISTER NOT NORMALLY
| R REFRESH REGISTER USED IN TRS-80
PROGRAMMING

In the above sequence, the HL register pair is loaded with
the address of the string buffer, the locations at which the
ASCII characters are stored. Note that the LD HL +X¥
instruction (see Appendix II) is an immediate-load type

25

instruction that loads a 16-bit value into the HL register
pair. In this case, the assembler will load a 16-bit address
corresponding to the location of label BUFFER into HL. We
have loaded the B register with 5 as a typical string
length. The CALL is then made to the DECBIN subroutine,
with a return after the conversion to the instruction
following the CALL.

Algorithm for DECBIN

Now let’s get into the operation of DECBIN itself. The
sequence of operations for DECBIN goes something like
this:

1. Clear a result variable.

2. Get an ASCII digit from memory, starting from the
leftmost digit of the string.

3. Convert the ASCH digit to binary. (Since an ASCII
“O” through “9” is represented by hexadecimal 30
through 39, this involves subtracting 30H from the
AscII digit.)

4. Add the result of the subtract, binary 0-9, to the
total.

5. If this is the last ASCII digit, you're done. If it’s not
the last digit, multiply by 10 and go back to step 2.

We've used a slightly modified version of this algorithm
in DECBIN. Rather than checking for the last ASCH digit
and then multiplying by 10, we’ll multiply by 10 as an
initial action. This process is illustrated in Figure 1-7, for
an ASCII string of 5 digits.

26

ASCIl “12345”

w kolwlol
h
LLCIEITIT

STEP RESULT RESULT+10 ASCH DIGIT DIGIT-30H ADD TO RESULT

1 0 0 31H 1 1

2 1 10 32H 2 12

3 12 120 33H 3 123
4 123 1230 34H 4 1234
5 1234 12340 35H 5 12345

Figure 1-7. Algorithm for DECBIN

DECBIN — Detailed Analysis

Now let’s go through the DECBIN subroutine to see how
this is implemented in code. The first nine lines of the
subroutine are comment lines describing the action of the
subroutine, the entry conditions, and the exit conditions.
The remainder of the subroutine implements the
algorithm.

The name of the subroutine DECBIN, is expressed by the
label opposite the first instruction mnemonic. During
assembly time, this label will be equated to the location of
the subroutine, and any CALL DECBIN will assemble as a
CALL to the proper absolute location.

27

Hints and Kinks 1-5
Symbol Table

As the Assembler does its work, it builds a
symbol table in memory. Every symbol
encountered is put into the table as a
six—character name and assoclated address
value. Any references to the symbol cause the
Assembler to search the symbol table for the

value of the symbol.
SYMBOL VALUE

DEC @2¢ :1nloke] ‘\ USUALLY CORRESPONDS

TO LOCATION OF LABEL

DEC @70 BAXX

EDD bbb FFFF |=~— AN "UNRESOLVED SYMBOL"
NOT YET ENCOUNTERED IN
EDD 979 | 9XXX SOURCE LINE OR COULD ALSO

ENN bbb 9AAF BE “UNDEFINED"
FOO bbb TXXX

SEX Bbb 9ABC |« A...OH, NEVER MIND..,
"_\W—“‘\—/‘\/—-

The first three instructions PUSH the BC and DE register
pairs and the IX register onto the stack, which allows the
stack to be used as a temporary storage area. The contents
of BC» DE s and IX s six bytes in all, will be saved in the
stack area as shown in figure 1-8. They will be retrieved
with subsequent POP instructions. “Why,” you ask, “are
the contents of BC» DE s and IX saved?”

The answer is that it’s convenient for the programmer to
CALL subroutines with data in the Z-80 general purpose or
other registers without having to worry about those

28

-—'/\/\/’

LOW MEMORY

1)
A%
)

<<

X
X

LOW
HIGH

6 BYTES FOR
3 PUSHES

wmojom

HIGH MEMORY ——"" __—"""__—" —

Figure 1-8. Stack Action for PUSH/POP

registers being used and the data being destroyed. As
B+ DE» and IX are used in the processing of DECBIN
their initial contents are saved in the stack at the
beginning of the subroutine. Now the registers can be used
for calculations and intermediate results during the
processing of the subroutine, and their contents can be
restored just prior to the RETurn. Of course any registers
that are used to pass back the results of the subroutine
would have new contents anyway and should not be saved
in the stack.

The LD IX:0 instruction clears the IX index register to 0.
IX will hold the intermediate results of the conversion.

The assembly-language code from label DEC040 through
DJNZ DECO40.,, represents the main body of the
subroutine. It is a loop (and the remarks are indented to
indicate the loop condition). The number of times through

29

the loop is determined by the number of ASCII digits to be
processed. Five digits would involve five iterations, four
would be four iterations, and so on.

The first order of business is to take the current contents
of the IX register and to multiply it by 10. Although we
could CALL another subroutine that performs a multiply,
we choose to do it an alternative way by a “shift and add”
technique. First we perform the ADD IXsIX, which adds
the contents of the IX register to itself. Any number added
to itself doubles the number, and that’s the case here. The
number*2 is then is PUSHed into the stack by the
PUSH I instruction. After the PUSH, the number+2 is in
both 1X and the stack. Two more ADDS change the
contents of IX to numberx4 and number=8, respectively.
The next instruction, POP DE, pops the number+2 value
from the stack and puts it into register pair DE. Now an
ADD of 1¥ and DE is done with the result going to IX. We
are adding (number*8 +number*2), which is the same as
number+10. In effect, we’ve multiplied the contents of IX
by 10.

The LC A (HL) instruction is a LoaD instruction that
loads the A register with the contents of a memory
location. The HL register pair is used as a register
indirect pointer to the memory location to be loaded. If,
for example, HL contained 9000H, the contents of memory
location 9000H would be loaded into the A register. The
parentheses around the (HL) indicate that a memory
location, rather than an immediate value, is involved in
the instruction.

30

As we entered the subroutine with the HL register
pointing to the first (leftmost) byte of the string, the first
execution of LD A (HL) would result in the first ASCII
character of the string being loaded into the A register.

The ASCII character in A is now converted from hex 30
through 39 (ASCII “0” through “9”) to a binary value of 0
through 9 by subtracting 30H. An ASCII “5”, for example,
would produce a binary value of 35H-30H =5.

There is one problem here, however. If the ASCII character
is not 30H through 39H, the result will be incorrect. We
chose to check the validity of the ASCII string in the
subroutine, so we'd best do that right now. If the result of
(ASCII character-30H) is less than 0, then the ASCII
character was less than 30H. If the result of (ASCII char-
acter-30H) is greater than 9, the ASCII character is greater
than 39H.

When we performed the SUB 30H, the set of flags in the
Z-80 was set according to the result of the subtract. If the
result was 0, the Z flag was set; otherwise, it was reset
(NZ). If the result was positive the Sign flag was reset (P):
otherwise, it was set (M or minus). Similarly, the other
flags (half-carry, carry, parity/overflow, add/subtract) were
affected. The flags are not always affected by an instruc-
tion — LoaDs never affect flags, for instance. However,
many instructions, especially adds and subtracts, do affect
the flags according to the results of the instruction.

31

Hints and Kinks 1-6

Flags

Flags are a collection of individual bits
grouped as the '‘'flags register.'' Flags are
used to test results of instructions by
conditional jumps. Some instructions (LDs,
PUSH, POP, RET, others) never affect the
flags. Other instructions (ADDs, SUBs, CP)
always affect the flags while still other
instructions only affect certain flags. See

Appendix II.

Don't hesitate to use instructions that don't
affect the flags before testing the flags with
conditional jumps. Just be certain which
instructions affect which flags — there are
some surprises here!

A F /\' F' FLAGS REGISTER
StZi-1H|-1A|N|C

SIGN (5) @F RESULT +, 1 IF —

-] ZERO{Z) @ IF RESULT # @, L IF
1 1F RESULT = @

HALF CARRY - NOT GENERALLY

W) USED BY
PROGRAMMER

PARITY/OVERFLOW (Piv)
@ \F ODD PARITY,
1 IF EYEN PARITY OR
@ IF NO OVERELOW OR
1 if OVERFLOW

ADD/ SUBTRACT (N} - NOT
GENERALLY USED BY
PROGRAMMER

CARRY (C) & IF CARRY,
1 \F NO CARRY

We can test the result of the subtract for a minus condition
by the JP M,DEC0O70 instruction. If the result of (ASCII
character-30H) was negative, the Sign flag will be set (M),
and the instruction will jump on the M condition to label

32

DECO70. If the result was positive, the jump will be
ignored, and the next instruction in sequence will be
executed. If the result was negative, the jump to DEC0O70
will cause the subroutine to terminate prematurely based
on the invalid ASCII character.

After the conditional jump, we make another test. The
LP 10 instruction compares the result to 10. A compare is
essentially a subtract of an 8-bit value from the contents of
the A register. Like a subtract, the flags are affected and
can be used for conditional branching. Unlike a subtract,
the contents of A remain unchanged; the result is
discarded. In this case the value to be subtracted is an
immediate value of 10. If the Sign flag is set after the CP,
the conditional jump JP P,DEC0O79 will cause a jump to
location DEC070 to terminate the subroutine because of an
invalid ASCII character. Otherwise the next instruction in
sequence will be executed.

Assuming that the ASCII character was valid, we now have
a binary value of 0-9 in the A register. The LD E +A copies
that value from A into the E register. The next
instruction, LD D 0, loads the D register with a 0 value.
In fact, the DE register pair is now loaded with the value
0-9. If the D register were not cleared by loading 0, the DE
register pair would contain garbage in the D register, and
DE could not be used in further operations involving the
binary value of 0-9.

Now the binary value in DE is added to the intermediate
result in IX. If this is the first time through the loop, IX
now contains the binary value of 0-9. If this is the second
time through the loop, IX contains A1*10+A2, where 4i is
the first converted ASCII value and A2 is the next. The
third time produces A1%100+A2%10+ A3, and so on.

The INC HL instruction adds one (INCrements) to the
contents of the HL register and puts the results back into
HL. (No flags are affected, by the way.) Initially, HL
pointed to the leftmost character in the buffer. Each time
through the loop, HL is adjusted to point to the next ASCII
character so it may be processed in turn.

33

The DJNZ DECO40 is a unique instruction. It operates as
follows: The contents of the B register is decremented by
one. If the result of the decrement is not zero (NZ), the
instruction jumps back to the specified jump address, in
this case DEC040. If the result of the decrement is zero,
the next instruction in sequence is executed. The
mnemonic stands for “Decrement and Jump if Not Zero.”

We entered the DECBIN subroutine with a count in the B
register of 1 to 5, representing the number of ASCII digits
to be converted. Each time through the loop, the count in
B is adjusted downward by one until zero is reached. As
long as the contents of B after the decrement is not zero,
the loop is reentered at DEC040.

Hints and Kinks 1-7
Loop Trace

Here's a ‘‘trace'' of individual registers
through part of the DECBIN routine. This type
of trace can be done with paper and pencil to
‘iplay computer'' and verify during '‘desk
checking'' that the program works as desired.

A X DE ML B
3l @ BUF 3
| ! I BUF+1 2
2
4
o) 2
1%}
32
2 12 2 BUF+Z |
24

Right now you're probably asking. ' 1Must
assembly-language programming be this
tedious?’' Well, yes... Look at the rewards.
though—fast speed, compact code. the
challenge..uh..maybe I'll go back to BASIC. ..

34

After the loop has been completed, IX contains the result
of the conversion of the ASCII string. The LD A B
instruction loads the A register with the contents of B. If
the count in B is 0, the loop has been completed for all
ASCII digits. If B is other than 0, a premature jump was
made to DEC070 because of an invalid ASCII digit. After B
has been loaded to A, we execute an OR A instruction.
This instruction is a commonly used instruction to test the
contents of A. ORing any number with itself does not
change the number. The OF A takes the contents of the
specified register (A) and ORs it with the A register. When
the specified register is A, this ORs A with itself. The
important thing here, though, is that the flags are set on
the result of the OR. The Z flag is set if the result in A is
zero or reset if the result is non-0. Since A contains the
previous count in B, the Z flag is set if B was zero
(successful termination of loop) or reset if B was non-zero
(invalid ASCII character). As the following PUSH, POP,
and RET instructions do not affect the flags, the Z flag
will remain set or reset on the return to the calling

program.

As the result is in IX, and we specified the result in HL on
exit, a transfer must be made. A PUSH 1} followed by a
PGP HL pushes the contents of IX onto the stack and then
immediately pops it back to the HL register pair. This is a
common way to transfer the contents of one register pair
to another as there is no LD from one register pair to
another. The three POPs at the end of the subroutine
restore the original contents of IX, DE, and BC. Note that
the order of the contents is opposite from the way they
were initially pushed onto the stack as the stack is a “last
in, first out” operation.

The RET instruction pops the return address from the
stack, puts it into the program counter, and causes a
return back to the calling program at the next instruction
after the CALL DECBIN. The HL register pair now contains
the result of the conversion (0-65535), and the Z flag is set
if the conversion was correct or reset if an invalid AScII
character was encountered.

35

The DECBIN subroutine is probably a typical TRS-80 sub-
routine in terms of complexity and size. If you have
trouble with some of the concepts involved with DECBIN,
review the appropriate material in TRS-80
Assembly-Language Programming, and continue to follow
the examples closely in future chapters. We'll attempt to
explain any subtleties as they come up.

36

Chapter Two
Assemblers and Assembling-
EDTASM

Radio Shack has two assemblers available for the TRS-80,
the cassette-based Editor/Assembler and the disk-based
Disk Editor/Assembler. To make things easier, we’ll refer
to the former as “EDTASM” and the latter as “the Disk
Assembler.” In this chapter, we’ll be primarily discussing
EDTASM. Some of our discussion will also apply to the Disk
Assembler. The two assemblers are similar in that they
both assemble Z-80 assembly-language code, but they are
different in the ways they load the code. In this book we’ll
be talking about using both EDTASM and the Disk
Assembler, and to keep things straight, we’ll note any
differences in format or technique as we go along.

EDTASM is more of a “single-user” assembler for short
programs, while the Disk Assembler is normally used for
more advanced work and larger programs. Chapter 13 has
a large program that has been assembled by EDTASM, and
we'll use that program for frequent examples in this and
other chapters.

A Look At EDTASM

For openers, let’s take a look at EDTASM. Some of this
material might be familiar to you from using EDTASM or
from reading TRS-80 Assembly-Language Programming.
The operations in EDTASM are more straightforward than
some of the advanced features of the Disk Assembler, so
we’ll start with the operation of EDTASM and then use that
as a base for discussing the Disk Assembler.

37

As we know from Chapter 1, EDTASM includes both an
Editor and an Assembler. The Editor has commands and
subcommands similar to the Editor in Level II BASIC.
Using these commands, an assembly-language source file
can be initialized, modified and written out to cassette
tape for subsequent assembly by the Assembler portion of
EDTASM. (As an alternate approach, the source lines can be
assembled directly from the buffer in memory to check for
a valid assembly before writing the file out to cassette.)
We won’t go into the editor commands and subcommands
as they're covered both in the EDTASM User Instruction
Manual and in our previous book.

Hints and Kinks 2-1
Typical Edit Sequence

Here's a typical edit sequence to create an
assembly—language source file with EDTASM:

1. Load EDTASM.

o %¥1100,10 starts lines at 100 with
increments of 10.

3. Enter source lines. Bach line is
terminated by an ENTER. Use tabs
between labels, op—codes, operands,
and comments.

4. Hit BREAK. This brings you back to the
Editor command mode.

5. W NAME. Write file to cassette with
name NAME.

See the Editor/Assembler User Instruction
Manual for directions on Editor commands and
subcommands.

What we are going to cover in this section are the
subtleties of EDTASM source language syntax and
pseudo-ops. Syntax (please, no bad jokes) refers to the
rules of structuring assembly-language lines, while
pseudo-ops are commands to the assembler in the op-code
field of the assembly-language line. For clarity, we’ll use

38

examples from a program assembled by EDTASM in the last
section of this book.

Source Line Syntax

Figure 2-1 shows a typical section of code for the MORG
program. The syntax is fairly straightforward. The source
lines are free format in that there are no specified
columns for labels, op-codes, operands, and comments. You
can write source code in any convenient format as long as
there’s a space between each field, as long as an op-code
does not start in column 1, and as long as a semicolon
precedes a comment.

80EB
80EE
80OF1
BoF4
8OF7
80FA
80FD
80FF
8102
8105
8107
8104
810D
810E
8111
8114
8117
8114
811D
811E
8121

8123

2AE985
22EB85
CDFB83
21F586
01403F
CD6D83
0601
CDOD8Y
C27F81
0601
€D9085
c27F81
7D
21C987
01803F
CD6D83
2AEB8S
22E985
F5
CDC782
2024

ES

COMMENT LINE STARTED

BY SEMICOLON

01500

01510 ;li'illilllllllllDEFINE MESSAGE

01520 ;

01530 DEFINE LD
01540 LD
01550 DEF005
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730

01740 f;/ CURRENT MSG FOR # IN MBUF -

01750

TAB (RIGHT ARROW) USED
TO SPACE TO PRESET
FIELDS (OPTIONAL)

HL,(CURCUR)
(LSTCURJ, HL
CLRCOM
HL,MS8GS
BC,LINE13
DSPHES

B, 1

INPUTS
NZ,DEF050
B, 1

DECBIN
NZ,DEFG50

A L
HL,M8G11
BC.LINE14
DSPMES
HL,(LSTCUR)
(CURCUR), HL
AF

FNDMSG
NZ,DEF035

HL

SEMICOLON PRECEDES
COMMENT FIELD

N/ ROUTINESSS SRR RS2 RRBEANR

;GET CURRENT CURSOR
iSAVE

+CLEAR COMMUNICATIONS AREA
;s DEFINE MESSAGE

sLIKE 13

;DISPLAY DEFINE MESSAGE
;1 CHARACTER

sGET CHARACTER

:GO IF GT 1

;31 CHARACTER

sCONVERT TO BINARY

;GO IF ERROR

;HSG # HOW IN A

s INPUT MESSAGE

(LINE 14

iDISPLAY MESSAGE

1GET OLD CURSOR

i RESTORE

:SAVE HMESSAGE ¢

;GET ADDRESS OF MESSAGE
GO IF NO CURRENT MSG FOR #

MUST DELETE

iSAVE START

Figure 2-1. Assembly Source Code

Because we like neat listings, we've used the right arrow
tab function in this and other codes to tab to the next tab
position. You might also notice that when loops oceur,
we've indented the loop in the comments column to make
them easier to follow.

39

A small sermon here from one who has learned the hard
way: you can’t use too many comments in a listing.
Invariably I find myself looking at assembly-language
code months later and wondering why I did a particular
thing. Comments help!

The labels for assembly-language lines are optional. In
most of the programs here, we’ve used the following
general rules for labels:

1. The first label of a subroutine or main section of
code is a descriptive name for the code, such as
SCROLL or CLRCOM.

2. The labels in that particular section of code use the
first three letters of the descriptive name plus
three digits.

3. The digits in the labels are generally in ascending
order. For example, INPQZO follows INPO10.

Of course, you can use any scheme you wish for labels. An
approach like the one above does make it easier to locate
code and ultimately makes coding easier.

The op-codes in the source code follow standard Zilog
mnemonics. These are the mnemonics that Zilog, the
designer of the Z-80, defined for each instruction.

The operands also follow the Zilog format for arguments.
This format uses parentheses to indicate a memory
address and no parentheses to indicate an immediate
value; it also fixes the number of arguments for any par-
ticular instruction. Let’s illustrate that first point about
parentheses: If a source line appears such as
LD HL+(3880H), the parentheses indicate that the
contents of memory location 3880H (and 3801H) will be
loaded into the HL register pair. But if a source line, (such
as LD HL »38BOH) appears, the lack of parentheses
indicates that the value 3880H will be loaded into the HL
register pair.

40

Hints and Kinks 2-2
Flag Mnemonics

The mnemonics used in conditional Jumps refer

to flag conditions. Typical instructions might
be

JP NZ,LOCN ;JUMP IF NOT ZERO
JR C,LOQOP ;JUMP IF CARRY

The mnemonics and associated flag settings
are:

I

P (sign positive)
M (sign negative)

MNEMONIC FLAG SETTING

NZ (non-zero) Z=0

Z (zero) Z=1

NC (no carry} C=0

C (carry) C=1

PO (parity odd) P/V=0

PE (parity even) P/V=1
S=0
S=1

Il

There are no conditional jumps for H
(half-carry flag) or N {add/subtract flag).
These are used internally by the Z-80 in
instruction execution.

The most frequent conditional jump is on the Z
flag, next the carry, next sign, next the
‘*‘overflow'' condition of P/V, and next the
‘‘Parity'' condition of P/V.

Similarly, LD A (HL) means that HL is used as a
memory indirect pointer register and that the contents of
the location pointed to by HL will be loaded into A.
LD A B, of course, means the contents of B will be loaded
into A. Note that the format for Z-80 instructions in the
operand field is always destination, source. The source
operand, whether memory or register, is always last, while
the result, or destination, is always first.

41

Constants

Now a word about numeric constants. As you've probably
noticed, we’ve been using H right along as a suffix for a
hexadecimal constant. Any hex value must havean Has a
suffix to indicate the data is hexadecimal. If the first digit
of the hexadecimal constant is A through F, legitimate hex
digits, then a 0 must be added before the hex digit. It’s
easy to see why this is so since the Assembler must be able
to differentiate between constants and labels.

If a constant has no suffix, it's assumed to be a decimal
constant. A suffix of D signifies a decimal constant (so
there’s no point in using it!), and a suffix of 0 signifies an
octal constant {so there’s probably no need for this suffix
either, since youll probably never require octal constants).

If a character is bracketed by single quotation marks, it’s
interpreted as an ASCII character. To load the B reg-
ister with an Ascil A, for example, we'd have
LD B,‘A’SLOAD A INTC B REGIBTER.

We’ll discuss expressions involving constants and sym-
bols after we look into the use of pseudo-operations.

Pseudo-Operations

Most assembly-language source lines are generative
types of lines. A mnemonic representing a Z-80 op-code
generates the corresponding machine code for that
instruction at that point in the assembly. However, there
are a number of commands to the assembler, called
pseudo-operations or “pseudo-ops,” that don’t generate
instructions. Instead, they inform the Assembler of certain
actions to be taken, or they create data values.

The first of these is the Origin, or ORG, pseudo-op. The
Origin informs the Assembler that the following code is to
be assembled for a particular memory location. For an
example of this, look at Figure 2-2, where MORG has been
assembled to run at 8000H. When the Assembler en-
counters the ORG statement, it will set an internal

42

assembly location counter to the value of the operand in
the ORG statement. This assembly location counter will be
adjusted by the length of each instruction as an
instruction is assembled. Unless the code is relocatable,
code produced for one Origin will not run anywhere else in
memory, since there are addresses in many instructions
which are absolute addresses. (We’'ll discuss relocat-
ability shortly.)

SETS ASSEMBLY LOCATION COUNTER TO 8000H

8000 00100 0
00110 ;MORG-CB2
00120 ;*¥¥¥XFFXFAXHFFYORSE CODE GENERATOR PROGRAMA*swssssusssnn

00130 ;
001h0
COT5Q [#RERRUIFIFRNNIRININISYSTEN EQUATESH IR SRR AR RNR SRR NS AR
00160 ;
3co0 00170 SCREEK EGU 3C00H iSTART OF VIDEO DISPLAY
3cho 00180 LINE1 EQU SCREEN+6Y {SECOND LINE
3ECO 00190 LINET1 EQU SCREEN+704 {TWELFTH LINE
3F00 00200 LIKE12 EQU SCREEN+768 i THIRTEENTH LINE
3Fu0 00210 LIKE13 EGU SCREEN+832 (FOUTEENTH LINE
3F60 00220 LIKE14 EQU SCREEN+896 {FIFTEENTH LINE
3FCO 00230 LIKE15 EQU SCREEN+960 {SIXTEENTH LINE
0002 00240 ENTER EQU 2 {ENTER CHARACTER
0001 00250 CLEAR EQU 1 ;CLEAR CHARACTER
0064 00260 DBDEL EQU 100 ;DEBOUNCE DELAY IN US
0065 00270 DBDELP EQU DBDEL+1 ;DEBOUNCE DELAY+] MS
0004 00280 WLDEL EQU 10 {HMAIN LOOP DELAY I 1/10 HS
03co 00290 SPEEDF EQU 960 {FIKAGLE FACTOR FOR SPEED
00300 :
003]0 ;lliilllilI!III!{I!IIHORSE EXECUTIVEllIIlIl!Ill‘llilll!il
. 00320
80 | 00330 START 34 ;DISABLE INTERRUPTS
8001A315994 00340 LD SP,TOPS {SET STACK POINTER
8005 \11EAB8 00350 LD DE,MBUF ;MESSAGE BUFFER ADDRESS
8007 \010BOA 00360 LD BC,2571 ;2571 BYTES

FIRST INSTRUCTION
ASSEMBLED AT
LOCATION 8000H

Figure 2-2. ORG Use

The END pseudo-op marks the end of the source file and is
self-descriptive. If the END has an operand, use it as the
starting point in the program when the program is loaded
as in END START.

There are three pseudo-ops that generate data in EDTASM.
The first of these is DEFB, or DEFine Byte, which generates
a single 8-bit value. The next is DEFW, or DEFine Word,
which generates a 16-bit value. The last is DEFM, or

43

DEFine Message, which generates a string of ASCII \
characters that usually represents a message used in the
program. Each of these three pseudo-ops can have a label,

if desired. Examples of each are shown in Figure 2-3.

09600 ;2esasscsosusassRasvORKING STORAGEESSAscsssetsnaznnsnsns

09610 3
85DC 0000 09620 TMP1 DEFW 0 : TEMPORARY STORAGE
85DE 00 09630 PRINTF DEFB 0 sPRINTER FLAG:0=0FF,1=0HN
85DF 00 09640 LPFTF DEFB o ;LP 15T TIME FLAG:0=1S8T TIME
85E0 00 09650 CHARCT DEFB 0 ;LP CHARACTER COUNTER
85E1 D204 09660 SEED DEFW 1234 ;DEFAULT SEED
85E3 2E16 09670 DEFHW 5678
85E5 9001 09680 DOTO DEFW 400 :DOT ON TIME (3 WPM DEFAULT)
B85E7 BOO4 09690 DASHO DEFW 1200 ;DASH ON TIME (3 WPM DEFLT)
85E9 003C 09700 CURCUR DEFH 3C00H ;CURRENT CURSOR POSITION
85EB 003C 09710 LSTCUR DEFW 3C0C0H +LAST CURSOR POSITION
85ED 0000 09720 TSLC DEFW 0 JTIME IN MS SINCE LAST CHAR
85EF 20 09730 LASTR DEFB v :LAST RANDOM CHARACTER SENT
85F0 F592 09740 IBUFL DEFW IBUF :POINTER TO LAST IBUF SLOT
§5F2 F592 09750 IBUFN DEFW IBUF ;POINTER TO NEXT IBUF SLOT
09760
03;70 5!lilll‘lilﬂﬂlllIlﬂllSYSTEH MESSAGESI!!I!IIIllllillﬂlﬂ‘il
09780
85F4 20 09790 MsG1 DEFHM ' SERMORGERFE

20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 “
20 20 20 2A 2A 2A 4D A4F
52 47 2A 24 2A 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20

8634 u3 09800 DEFM *CHAR=SEND CHARACTER SHIFT 0-9=SEND MSG N'
48 41 52 3D 53 45 UE 44
20 43 48 41 52 41 43 54
45 52 20 20 53 48 49 46
sS4 20 30 2D 39 3D 53 45
4E 44 20 4D 53 47 20 4E

865D 20 09810 DEFM * SHIFT R=SEND RANDOM SHIFT D=DEFINE MS'
20 53 48 49 46 54 20 52
3D 53 45 HE 4k 20 52 41
4E 44 4F 4D 20 20 53 48
49 46 54 20 44 3D L4 45
46 49 4E 45 20 4D 53

8685 47 09820 DEFHK 'G SHIFT S=DEFINE SPEED SHIFT P,NsPRINT'
20 20 20 53 48 49 46 54
20 53 3D 44 A5 46 49 4E
45 20 53 50 45 45 44 20 s
20 53 48 49 46 S4 20 SO -
2C YE 3D 50 52 49 4E Si

B6AE 20 09830 DEFM * OR KO
4F 52 20 4E 4F

Figure 2-3. DEFB, DEFW, DEFM Use

The DEFW generates 16-bits of data in standard Z-80 word
format. In this format, the least significant byte of the 16
bits is stored in the first byte, and the most significant
byte of the 16 bits is stored in the second byte. If you look
at the machine code produced in Figure 2-3, you'll see the
hexadecimal data generated in CURCUR DEFW 3COO0OH,
for example, is arranged as 003C.

44

Hints and Kinks 2-3
Sixteen—-Bit Data Format

Many programmers get confused over 16-bit
data format. When a 16-bit piece of data is
stored in memory, it is always stored least
significant byte followed by most significant
byte. The code

LD {LOCN) ,HL : STORE HL
LD (LOCN+2),DE ;STORE DE
LD (LOCN+4),BC ;STORE BC

would store data in the LOCN area as follows:

LOCN+@
+ |
+2
+3
t4
+5

Data in the stack (say, a PUSH HL) is stored
the same way.

IO Y IMm||r

When data is retrieved (LD DE, (LOCN+2)} or
POP BC) it's put back into the registers in
identical fashion. (Whew! What if the
designers had chosen to retrieve it in
opposite fashion.... Thank goodness for cool
heads in Silicon Valley...).

The DEFM simply generates a one-byte ASCII character for
every character in the string. The string is started and
terminated by a single quotation mark ().

The DEFS (DEFine Storage) pseudo-op reserves a number of
bytes at the current assembly location. If, for example, you
want to define a table that would be filled with values
during program execution, you might have the following
code:

TABLE DEFE 100 s100-BYTE TABLE
45

The assembler would then increase the assembly location
counter by 100, bypassing 100 bytes. Note that the .
machine code bytes produced for a DEFS consist of garbage,
or unknown, data. A DEFS does not fill the vacant space
with zeroes, all ones, or anything; it just leaves whatever
is there to begin with.

The last pseudo-op is EQU, or EQUate. To understand this
pseudo-op, you need to understand the processing that the
Assembler goes through. The Assembler makes two (or
more) passes through the source file. After the first pass,
it has assembled a symbol table of all labels with a
corresponding numeric value for each symbol. (This is the
information displayed at the end of the program listing.)

In most cases, each symbol has a value that represents the B
assembler location counter value, which is essentially the
location at which the instruction or data for that symbol
will reside. The EQU pseudo-op, however, can force the
Assembler to equate a label either with a numeric value or
another label. This is the case for CDTAB as shown in
Figure 2-4. CDTAB is equated to CTAB. In other words, the
value associated with CTAB — the location of 8812H — will
also be used for symbol CDTAB. In this case, we made the
association because the CDTAB contained the same data as
the first 44 locations of CTAB.

10080 ;RRREAEsLQIVESBEBEECTAD CHARACTER TABLE®Esesssscsdsnasexy

10090 ;% TABLE OF CHARACTERS TO BE SENT IN RANDOM MODE. b

10100 :* DISTRIBUTION DOES NOT CORRESPOND TO THAT IN HOR- #

10110 :® MAL TEXT. SPACE CHARACTER NOMINALLY EVERY S5TH L] o

10120 :® CHARACTER. # 9
W

8812 i ;) CTAB DEFN *ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,2/~ =3
THESE BYTES ARE CDTAB!

883E DEFM "0123456789.,7?/- =;ABCDEFGHIJKLMNOPQRSTUVWXYZ"

8864 DEFH '

887¢C DEFH *ABCDEFGHIJKLMNOPRSTUVY®

46

10180
10190 ;#EERBERSAANRNNBBRNECDTAR CODE TADBLENEERZESSSRRARNNAREERS
10200 ;* TABLE OF VALID ASCII GHARACTERS TO BE TRANSMITTED. ¢

10210 ;% INDEX TO CHARACTER USED TO OBTAIN TIMING CODES *
10220 % FROM TTAB. *
10230 ;

8812 10240 CDTAB EQU CTAE ;SAME DATA

goac 1025¢ CDTABS EQU 4y :SIZE OF DATA
10260 ;

Figure 2-4. EQU Use Example 1

As figure 2-4 also shows, you can use the EQU pseudo-op
for CDTABS. CDTABS is equated to 44. Every time CDTABS is
referenced, as in LD BsCDTABS, the value loaded for
CDTABS will be 44. LD B:CDTABS would therefore
become equivalent to LD B :44. Equates are used in this
fashion so an easily-remembered symbolic name can be
given to constants such as size of tables, addresses of I/O
devices, etc.

Another use of EQU is shown in Figure 2-5. Here MBUF
(Message Buffer), has been equated to %. % is a special
symbol that represents the current value of the assembler
location counter. After the MBUF equate, MBUF would be
stored in the symbol table as the value 88EAH. The next
line, ENDM EQU $+2Z571, equates the label ENDM to
$+2571. Since the assembler location counter did not
change from the previous equate (no instructions or data
were generated), ENDM is equated to BBEAH+2571 or
82FSH. This little trick is synonymous to:

MBUF EQU 4
DEFS 2571
ENDM EQU %

and is quite commonly used.

]0780 ;lll!ll!llllillllllliMEsSAGE aUFFER!!lII!!lilllilll!lllil
10790 ;% ARBITRARILY SET AT 2560 BYTES (256 BYTES PER MSG e
10800 ;* PLUS MSG# PLUS 1 TERMINATOR). 2
10810 3

88EA 10820 MBUF EQU 3

92F5 10830 ENDM EQU $+2571
10840 ;

Figure 2-5. EQU Use Example 2
47

Operators and Expressions

EDTASM allows a limited number of operations involving
addition, subtraction, ANDing, and shifting. These oper-
ations are performed by the operators +, —, &, and <.
Addition of constants are shown in Figure 2-6, along with
one subtraction example for the size of F TAB. Expressions
may also include a mixture of numeric data and labels in
any combination.

01130 ;

01140 ; FUNCTIOHN TABLE

01150 ;
80BE Cci 01160 FTAB DEFB DT+ 80H ;DEFINE MESSAGE
80BF D3 01170 DEFB *St+80H {DEFINE SPEED
80C0 D2 01180 DEFB "R*+80H s TRANSHIT RANDOM
80Ct EO 01190 DEFB '0f'+80H ;TRANSHIT MESSAGE 0
8ocz2 B1 01200 DEFB 117+ 80H H 1
80C3 B2 01210 DEFB *27+80H H 2
8ocy B3 01220 DEFB *37+80H H 3
8ocCs B4 01230 DEFB Th1+80H i 4
BoC6 BS 01240 DEFB "5'+80H H 5
80CT B6 01250 DEFB "61+80H H 6
80C8 BT 01260 DEFB *7'+80H H 7
80C9 BB 01270 DEFB *81+80H 8
80CA B9 01280 DEFB "9'+80H H 9
80CB DO 01290 DEFE *P'+80H {SET PRINT
8occ CE 01300 DEFB *N*+80H $RESET PRINT
000F 01310 FTABS EQU $~FTAB $1SIZE OF FUNCTION TABLE
0000 01320 END

00000 TOTAL ERRORS

Figure 2-6. Operators and Expressions

Using EDTASM to Edit and Assemble Programs

EDTASM is geared to editing and assembling one module
of assembly-language code. After you have specified, flow-
charted or analyzed, and coded a program on paper, use
the Editor in EDTASM to enter the complete program code.
Although you have probably divided the program into a
number of different functional modules, include the
modules as one large, whole assembly-language source

file.

48

Hints and Kinks 2-4
Typical Assembly Sequence

With the source file in memory (either from
cassette or from keyboard entry). a typical
assembly sequence might be:

1. *A/NO/WE Assemble to screen with no
object; wait on errors.

2. Go back to Editor to correct any errors.
When there are no errors, go to 3.

3. *A/NO/LP Assemble to line printer with no
object.

4. Take the listing and do a comprehensive
desk check {Coffee or other stimulants
allowed.)

5. Repeat steps 1 through 4 as often as
required.

6. *A NAME/LP Assemble final assembly to line
printer, object to cassette with name
“"NAME" .

7. Debug.

The resulting source file on cassette is then assembled as
one large assembly. MORG, the Morse Code Program of
Chapter 13, is a large program that approaches the limits
of memory capacity. Because all of the source lines must
be held in memory at one time, in addition to the symbol
table, there’s a practical limit to the size of the program
that can be assembled under EDTASM. This limit depends
upon the memory size of the system, number of characters
in the source file, and number of labels used. We'll see in
the next chapter how you can use the Disk Assembler to
overcome some of the limitations by using a different
approach to assembling and loading programs, but let’s
first get a clear understanding of EDTASM operation.

49

As we can see from looking at MORG, the entire program is
assembled in one swell foop. The ORG statement specifies
the starting address of the program, and all instructions
are referenced to the assembler location counter. The
assembler location counter is initially set by ORG and
incremented as each instruction or pseudo-op is generated.
EDTASM produces object code for the program as a cas-
sette file. The object code is very similar to the machine
code shown on the listing, but contains some additional
data to hold the file name, origin, number of bytes per
record, checksum, etc.

You can load the resulting object code by a SYSTEM
command while in Level II BASIC monitor mode. The
SYSTEM command enables you to load the object file
created under EDTASM and then to transfer control to the
starting address of the program (specified by the operand
used with the END pseudo-op).

The object code produced by EDTASM generally can be
loaded and executed only at one point in memory, the area
at which it was ORiGined. If you load the object code at
another area (by some devious means), it won’t execute
properly. Let’s see why this is so.

Relocatability

Instructions in the Z-80 instruction set are generally
relocatable or non-relocatable. Relocatable instructions
will execute properly anywhere in memory; non-relo-
catable instructions contain absolute references and will
execute only in the area for which they were assembled.

50

Hints and Kinks 2-5
Why All the Interest in Relocatability?

Much Z-80 literature talks about the
relocatable instructions or code and touts the
advantages. Are there many advantages in the
relocatable Z2-80 instructions?

Not really. Any large piece of code is
probably not relocatable because it will have
to contain JPs and CALLs — unless some pretty
clever coding is done. About the only reason
for relocatability on the TRS-80 is to allow
short code segments to be embedded in BASIC
programs. This merges BASIC and
assembly—language code and allows the
programmer to use assembly-language code to
speed up his time gritical processing.

Occasionally someone will try to take an
existing program that is available in machine
language only (no listing) and attempt to
relocate it to run elsewhere. This is
possible, but very tedious. Try it only on a
favorable bio—-rhythm day!

Figure 2-7 shows typical code for the MORG program
produced by EDTASM. Let’s take a look at the instructions
to see which are relocatable, which are not, and why.

NOT RELOCATABLE

8197 CDFB83 02340 SPEO0OCS
8194 21CB86 02350
819D 01403F 02300

{CLEAR COMMUNICATION AREA
. ;SPEED MESSAGE
BC,LINEI3 JLINE 13

8140 CD6D83 02370 DSPMES ;DISPLAY SPEED MESSAGE
8143 0602 02380 B,2 ;2 CHARS

8145 CDOULBY 02390 INPUTS ;GET CHARACTER STRIHNG
8148 2035 02400 NZ,SPEO20 ;GO0 IF GT 2 CHARACTERS
81AA CD9085 024140 DECBIN ;CONVERT TO BINARY
81AD 2030 02420 NZ,SPE020 ;G0 IF ERROR

81AF 7D 02430 AL :GET SPEED 0-99

8180 FEO3 oa2u4yu¢g yTEST FOR 3 WPM

81B2 FADF81 02450 SPEQ20 ;GO IF LT 3 WPM

81B5 FE3D 02460 ;TEST FOR 60 WPM

81B7 F2DF81 02470 P,SPEQ20 :GO IF GT 60 WPHM

81BA 21C003 02480 HL,SPEEDF ;1200/WPM=DOTO TIHME
81BD 4F 02490 C.,a WPH LS BYTE

81BE 0600 02500 B,0 ;NOW IN BC

81C0 11FFFF 025190 DE,~1 QUOTIENT

RELOCATABLE

Figure 2-7. Relocatable Code
51

The CP 61 found 12 lines after SPECOS has
machine-language code of FE3SD. By reference to Appendix
II, we can see that the first byte of this instruction is the
op-code and that the second byte is the data value of 61
(3DH). This instruction would assemble exactly the same
way at any spot in memory, because the op-code is fixed
and the data value would have to be the same.

The instruction CALL CLRCOM, however, is a different
beastie. CLRCOM is a subroutine that appears somewhat
later in the program. If you’ll look again at the formats in
Appendix II, you’ll see that a CALL consists of three bytes.
The first of these is an op-code of CDH. The second and
third bytes are an absolute memory address that hold
the call address with the bytes in reverse order. The
address in this case is that of CLRCOM, which is at 83FBH.
Would this instruction execute properly if MORG were
moved to another area of memory? Obviously not, as the
CLRCOM subroutine would also be relocated, and its
address would be other than 83FBH. A similar situation
would exist for instructions such as JF SPEOQZO,
LD HL +MS5G4, and others that contain absolute addresses.

You might be wondering if it’s possible to write programs
in pure relocatable code. As a matter of fact, you can
write relocatable code in relatively short routines that
contain no absolute addresses and use JR type jumps for
conditional and unconditional jumps. We'll explore some of
the techniques in Chapter 5. Longer programs require you
to do something such as reassembling your program by
EDTASM with a new Origin. Another way is to use the
facilities of the Disk Assembler. We'll look into this last
method in the next chapter.

52

Chapter Three

Assemblers and Assembling —
Disk Assembler

In this chapter we’ll talk about the Radio Shack Disk
Assembler. You should use this material only as a sup-
plement to the Disk Assembler User Instruction Manual,
since an adequate discussion of the Assembler would
require more than just a single chapter. A good example
for some of the techniques associated with the Assembler
is included in Chapter 14 where we illustrate an entire
program made up of modules assembled and loaded by the
Disk Assembler and Loader. We'll be using further exam-
ples in the text of Disk Assembler code and EDTASM code
in the remaining chapters of this book.

Comparison Between EDTASM
and the Disk Assembler

Although EDTASM is cassette-based and the Disk Assem-
bler must use files from disk, the two systems share more
similarities than differences. Both edit assembly-language
source files and have approximately the same
line-oriented type of Editor with very similar commands
and subcommands. Both assemble the source files and look
for identical formats as far as Z-80 mnemonics and
instruction syntax. Both use pseudo-ops for origin;
pseudo-ops for definition of bytes, words, text, and storage;
and a pseudo-op for equates. Many EDTASM source files can
be converted to Disk Assembler use quite easily with a
minimum of editing changes, primarily by adding a colon
after each label and changing some of the data definitions.

53

Hints and Kinks 3-1
Format Differences between
EDTASM and Disk Assembler

There are several format and pseudo-op
differences between the two assemblers. The
most obvious 1s the use of a colon after
labels on most source lines {(not on an EQU).

The pseudo—ops for data definition are also
somewhat different. Although DEFB, DEFW, DEFS "
and DEFM may be used, the Disk Assembler also g
uses DB in place of DEFB, DW in place of DEFW,
DS in place of DEFS, and DC in place of DEFM.
DB '‘string' can also be used as a DEFS.

Multiple arguments can be used for the data
definition pseudo—ops as in "“DEFB 2,3.5".

The Disk Assembler also requires at least a 95
character wide line for assembly listing.

Can you convert EDTASM files on cassette to
Disk Assembler source files? Conceivably, a
short assembly-—language conversion program
might be used that would convert the format
differences above (and others). It would make
a nice exercise

The simple uses of the Disk Assembler look very similar to
EDTASM. However, when all the capabilities of the Disk
Assembler are utilized, there are some major advantages
to the Disk Assembler not found in EDTASM. In approxi-
mate order of importance, these are:

1. The Disk Assembler uses disk files for source,
object, and listing.

2. The Disk Assembler produces object-file output in
the form of relocatable object modules which
are loaded by a special Loader.

3. The Disk Assembler has a macro capability to
generate in-line macro code.

4. The Disk Assembler has a number of pseudo-ops
relating to program sections and conditional
assembly.

54

5. The Disk Assembler has a number of pseudo-ops
relating to listing format.

We'll discuss each of these points in the following text, and
give a number of examples to illustrate each concept.

Disk Files for the Disk Assembler

The Disk Assembler operates on assembly-language
source files on disk created by the Editor portion of the
software package. These source files are processed by the
Assembler and the resulting object files are output to disk.
The object files can be loaded into memory by the Loader
portion of the package, and a CMD (CoMmanD) file can
then be dumped to disk.

The CMD file, is a core-image file of the machine-
language code that makes up the complete assembly-
language program. It can be loaded and executed by
simply typing in the name of the CMD file after the TRSDOS
“DOS READY” prompt.

In addition to the source, object, and CMD files created by
the Editor and Assembler, a listing file can be created for
a hardcopy listing. The listing file can then be “PRINTed”
on the TRS-80 system line printer.

Using the Editor for Source Files

The assembly-language source file is similar to other files,
but there are significant differences. The assembly-lan-
guage source file created by the Editor is almost an ASCII
file. However, there is some non-ASCII coding for the line
numbers at the start of each line. The Editor commands
are similar to the Editor commands in Level II BASIC or
EDTASM, with some differences. The symbol “.” is used to
refer to the current line and the symbol “*” refers to the
last line of the edit buffer, just as in the other editors.
The first line of the buffer, however, is signified by
the symbol, “e” (up arrow), rather than “#”.

Ranges of lines may be specified, just as in the other
editors. For example, to delete lines 200 through 300, give

55

the Editor command D200:300. A new type of range
specification, however, deletes a specified line through the
next n lines. D200 13, for instance, would delete line 200
and the next 3 lines following line 200.

The Editor commands — I (Insert), D (Delete), R (Replace),
P (Print), and N (Number) — all operate the same as in the
other editors. To edit a specific line, though, the command
A (Alter), rather than E is given. See Table 3-1.

Table 3-1
Disk Editor/Assembler Edit Commands
Command Action Typical Example*
A Alter A1 00 starts edit (Alter) of line 100
B Begin B /2 moves to beginning of page 2
D Delete line D10@:209 deletes lines 100-200
E Exit Editor E NAME /MAC exits Editor, writes
file NAME
F Find F100:200%$TWINE$ finds string
“TWINE” g
I Insert 119@ 19 inserts lines from 100,
increment 10
K Kifl K /2 kills page mark at page 2
L List L1@@:# prints lines from 100 through :
end
M Mark M100 inserts page mark after
line 100
N Number N140 519 renumbers lines from 100,
increment of 10
P Print P1oo: 200 displays lines 100-200
Q Quit @ quits Editor without disk write
R Replace R1@0 replaces line 100
] Substitute S510¢:200%M0OD II$MOD III%

substitutes “MOD IlI”

W Write to disk W NAME/MAC writes text as disk file
“NAME/MAC”

X Extend K100 : 200 enters extend mode for
lines 100-200

*Consult Disk Editor/Assembler manual for the many variations.
$ = BREAK

56

Editor subcommands, commands that operate within a
specified line, are very similar to the other editors. You'll
discover some new subcommands in this mode, though.

See Table 3-2 for a complete list.
Table 3-2
Disk Editor/Assembler Edit Subcommands

Subcommand Action “Usual” Form *
A Prints remainder, enters changes, A
concludes editing
B(lanks) Inserts spaces BoriB
C(hange) Replaces characters C <ch> or iC <text>
D(elete) Deletes characters DoriD
E(nter) Enters changes, concludes editing E
F(ind) Finds text Fé<text>$%
G Inserts characters G<ch>
H(acks) Delete remainder and enter Insert H or H<text>$%
mode
I{nsert) Inserts text I or I<text>%
K (il Kills characters up to <ch> K<ch>
L(ine) Prints line, positions cursor to L
beginning
N{ot) Restores line, moves to next line N
O(bliterate) Deletes all characters up to O<text>$%
<text>
P(osition) Prints remainder of line, cursor P
static
Q(uit) Exits edit mode and restores Q
original line
R(eplace) Replaces characters with <text> 1R<text>$%
S(earch) Finds character <ch> S<ch>
T(runcate) Deletes remainder of line and T
concludes edit
W(ord) Moves the cursor to beginning of W
next word
(e)¥(tend) Print remainder of line, go into i
Insert mode
Z(aps) Deletes word Z
Delete character
ENTER Prints remainder, enters changes,
concludes edit
SHIFT)(==) Restores original line, repositions
cursor to beginning
Spaces over character
Moves cursor to line end

= number

$ = BREAK or ENTER

<ch> = character

<text> = text string

* Consult Disk Editor/Assembler manual for the many variations

57

Here’s the procedure for creating a new source file:

1. Load the Editor by entering EDIT after the
TRSDOS READY prompt. The Editor will be loaded
as a CMD file and will start execution.

2. The Editor will ask for the file name by displaying
FILE:.

3. Enter a TRSDOS file name with optional extension,
password, and drive number; follow that with the
BREAK key. Since the Assembler works with the
extension /MAC, this would be the best choice for
the extension. You can also disregard passwords,
unless you're really paranoid about your source
files! Some examples of source file names might be
MTALPMAC:1 or HTPM/MAC.

4. You'll now be at the command level, as indicated
by an asterisk (*), and can start creation of source
lines by insert commands such as 1100,

To modify an existing source file, follow a similar sequence
to the one above, only type an ENTER rather than a BREAK
after the file name.

During the source file editing, you can P(rint) the assem-
bly source lines on the screen, or get a hardcopy on your
system line printer by the L(ist) command. During the
editing session, you will notice some disk activity taking
place. The Editor will be reading in pages for the source
file as required.

When you have the source file the way you'd like it, you
can write a new source file to the disk by giving the E(nd)
command and the name initially used. If this is modifi-
cation of an existing file, the form of the command is
E NAME/MAC, where the NAME of the source file must be
different than the one originally read in.

This last point means that when you edit an existing file,
you must first read in the old file, perform editing on the

58

old file, create a new file at the end of the edit session,
KILL the old file name under TRSDOS, and then RENAME
the new file name to the old name to get back to square
one. Though somewhat tedious, this goes quite rapidly and
does offer some automatic protection against clobbering
an old file before its time.

Hints and Kinks 3-2
Typical Edit, Rename Sequence
Here's a typical Edit and rename sequence:
DOS READY
EDIT Load Editor
FILE: EQUATE/MAC Read in old file
{title, copyright)
*A100 Edit line 100
00100 TITLE EQUATE
*E EQUATELl/MAC End edit, write out
DOS READY
KILL EQUATE/MAC Kill old file
DOS READY
RENAME EQUATE 1/MAC TO Rename new to old
EQUATE/MAC name
DOS READY

Relocatable Object File Assembly

The Assembler will read in the source file created by the
Editor, assemble it, and produce a relocatable object file,
a listing file, or both on disk. We need to talk about the
relocatable object file, since the philosophy here is quite
different from the EDTASM approach.

Figure 3-1 shows a typical assembly listing for the Disk
Assembler. (This is a module of the Tic-Tac-Toe Artificial
Intelligence Program of Chapter 14.) The appearance of
this assembly is very similar to what EDTASM would
produce. The source line image and the edit line number
portion are almost identical.

59

SNOTLOV FWIL IS¥TA ¥Od 1S3l ! 05800

HIGHAN JAOW OHIZ! ¥ (ONJAOW) a1 o600 #0000 2€ 12100
78YL FAOW oyaz! HOT1Id 110 0ES00 #0000 @D 14€00
SILXE g¢ g0 a1 02500 8000 10 10€00
SSIUAAY FTEYL FAOM! GLIAON ' 3Q al 01500 20000 L1 16£00
0! ¥ HOX :80OLHV 00600 v 18E00
314yl SAOM oyaz ¢ 06 %00
INIT LXIN HOZ 0D} S00LYY Ty 68 hoo £9 g1t 1 9E00
INIT IX3N 01 INIOd! 24°X1 aaqy 0L 00 60 da s 1nE00
INIT ¥3d S3LX€ &f §fod a1 0900 G000 1O s LEOO
INIT AVHA! THVHA 190 05100 20000 @O 13200
4SW *INIT J0 l¥yis! (n+XI)*H a1 0t Koo 70 99 aq 1H200
HS1 ‘ENIT 40 L¥vist (E+X1) 1 a1 0€ %00 £0 39 aa +§200
SNSOd HVHD 30 # avoT! (2+X1) ‘g a1 02 koo 20 9% aq 16200
LYIA/ZIHOH AVOT! (1+X1)*0 a7 01100 L0 38 aa 12200
INog 41 09! 0014V ‘2 e 00 oo 9t gZ 40200
HOLVNIWHEL 404 ISHL! HA30 42 06£00 44 34 13100
YALOVHVHD 139! (XI)*y a1 1G00LHY 0gEo0 00 3L aq 18100
aI¥o ¥od Idyl! GLATED*XT a1 0L£00 80000 12 aq L4100
J¥EH QI¥H mveq ! 09£00
XHOLSIH ividsIa! §aWdsd T1V9 0SE00 80000 42 s hloo
¥IHY AHOLSIH 40 LEVIS! €LENITDE a1 0nE00 20000 LO 41100
IOVSSIW AYOLSTH! LOSKH*TH at 0£E£00 #0000 L2 43000
YEEY XY4SIQ 11I4f HOT1Id 11D 02Eoo #0000 QO +H000
SENIT ELf 2egton a1 0L£00 OhED LO 18000
NIZYOS J0 IY¥VIS! NZZY¥DS ‘dad a1 00£00 80000 1 15000
440 1TV $OIH4VED! Hog'y a1 06200 0g d4€ +£000
¥O¥IS 13§ A2YIS s a1 :dIlHY 08200 20000 LE 40000
¢ olzos
snosnawonoesenlNIOd ZUINE LYVISHY HO Fm<pmauaa=uu-nuam 09200
¢ 05200
tutnannauu:ua‘au.Bua-auaﬂac.tmu‘a'uumsuauta-uaaan-‘ua.—m CZNOO
M WYH50Hd ONINMVIT HOL-DVI=-0IL et 0E200
T T, 022oo
HOVIS LLOSH'OLOSH TLSY T 1xd 01200
6DSH GDSH® LOSH 9OSH SOSW 1DSH EDSH ZDSH’ LOSKH 1xd 00200
YIdLOU ‘dSON‘OON‘XON 1X3 06100 mcﬁw_:@
ILION*MANTY ‘318Y L ‘STHLXN ‘d1SHJ ONTAOK 1x3 08100 <t
)) | HLGNTH'LONIY'@LTVNY 1X3 0Lt00 A2jqUIDssSYy HsSIiQ
GVLION ZXVHHY LAVHEY *ZULSIH ALIAON ‘EIQTIHD 1x3 09100
NIGSVE ‘I4OWAW'dNLSTH'SANYOS 1X3 05100 @GOMQPP ‘L-€ mhﬂa_m
SVENIE AV T30 1NODSH THVHA ‘SINdSA HOTITI 4 1x3 orL00
LNINIAONVE VIXHYY “ILVI0H ‘HVTVNY ‘HIENAN 1X3 0Elo0
ELINIT X4HYOS 'NITYOS 1x3 0Z100
dIL¥V XHINE 0LL00

60

LNIVH 3TLIL 00100

Looking at the machine language code produced by the
Assembler, we see that many of the instructions look
familiar. ADD 1X,BC, for example, generates two bytes of
DD 09, just as it would in EDTASM. If you look at some of
the CALLs, however, you'll notice that the address of the
CALL is zeroes. Also, the address for JP instructions (not
shown) appear to be low-valued, such as 0029. Note also
that 16-bit values are printed in “normal” order on the
listing; in memory they are still least significant byte
followed by most significant byte. What’s the logic behind
these differences?

In a relocatable object module containing the machine-
language code for this assembly, the machine-language
code is referenced to the start of the module. The location
column on the listing starts at location 0’ (the prime
indicates that the code is relocatable). Jumps within the
module generate instructions that contain addresses that
are “displacement” addresses from the start of the module.

The Loader for the Disk Assembler handles the task of
loading in a number of these relocatable object modules
and of filling in the proper addresses for non-relocatable
instructions such as JPs and CALLs.

Hints and Kinks 3-3
Mode Indicators

The character at the end of the location value
is the mode indicator as follows:

! Code relative

i Data relative

! Common relative

(space) Absolute

* External

These characters are also used after two-byte
values.

61

Another thing that the Loader does is to link together
locations from module to module. Obviously there has to
be some way for modules to communicate with one
another. For example, a portion of main code, such as is
shown in Figure 3-1, might have to call a subroutine
represented by another module.

The loader does this by linking together EXT(ernals) and
ENTRYs from module to module. The ENTRY operand is a
location within one module that might be referenced by
code in another module, as for a CALL or JP. The EXT
operand is a label that is external to the module but is
referenced inside the module.

Look again at Figure 3-1. At location 14’ a CALL is made
to a subroutine DSPMES. This subroutine is external to this
module and declared as an EXT in the pseudo-ops at the
start of the program. Location ARTIP, however, is the
main entry point and is declared as an ENTRY. Note that
the CALL to DSPMES results in machine code of CD 0000*.
The address will be filled in by the loader at load time.

A complete assembly-language program is created by link
loading a group of relocatable modules, such as the one
related to the listing in Figure 3-1. The loader compiles a
tabie of all the EXT and ENTRY points, somewhat
analogous to the Assembler symbol table, and eventually
goes through a “threaded list” to fill in the addresses for
every externally referenced (or global) label. Labels
within the module (local labels) are, of course, no problem.

There are several major advantages to this type of assem-
ble and load scheme: (1) we are no longer limited by
memory size in constructing large assembly-language
packages; (2) we don’t have to worry about relocation as
the loader takes care of that automatically; and (3) the
assembly-language design job can be more structured by
dividing the design into a number of separate modules (an
especially valuable feature when more than one pro-
grammer is working on a project).

62

There are a few minor disadvantages. For one thing, the
entire edit, assemble, load process is less interactive and
more time consuming. It does take somewhat more time to
generate a new assembly-language package as the entire
load process has to be repeated, even if only one line has
been changed. However, the extra time spent is a small
price to pay for the increased flexibility of the Assembler.

Macro Capability

Another feature the Disk Assembler has over EDTASM is
the ability to use macros. Macros are essentially in-line
subroutines generated at assembly-time. For example,
suppose that we have six instructions that appear a dozen
times in an assembly-language program:

ADD HL sHL sVALUE*2
PUSH HL sSAVE UALUE*Z
ADD HL +HL iVALUE=4

ADD HL +HL IVALUE*B

POP DE VAL UE*Z

ADD HL:DE sUALUE*10

Every time we wanted to perform these six instructions,
we’d have to key them in to the edit. Of course, one
alternative would be to include them as a subroutine, but
another way would be as a macro.

Figure 3-2 shows the six instructions defined as a macro
by a macro definition, and later invoked as a macro by a
macro call. The macro definition involved the pseudo-op
MACRO, which defined the label MUL 10 as the macro name,
and ENDM as the pseudo-op which ended the definition.
After the definition, any use of the macro name in the
op-code column would automatically generate a macro
expansion for the six instructions. You can use the macro
as many times as needed.

63

00100 : SAMPLE MACRO USE
00110 ; FIRST, DEFINE THE MACRO
00120 MUL1O MACRO

00130 ADD HLHL
00140 pusH HL
00150 ADD HL HL
00160 ADD HL.HL :
00170 POP DE 4
00180 ADD HL,DE
00190 ENDM
00200 ; NOW THE MACRO CAN BE INVOKED AS REQUIRED
0000 3E 23 00210 START: LD A,23H ;BLAH, BLAK
Qo220 MUL10 ; INVOKE
o002 29 ADD HL,HL
0003 E5 PUSH HL
0004 29 ADD HL,HL
00051 29 ADD HL,HL
0006 * D1 poP DE
ogo7'? 19 ADD HL,DE
00230 END

Figure 3-2. Simple Macro Use

Such macro use does have certain advantages as well as
disadvantages. By defining the six instructions as a macro,
we've made it much easier to generate the code simply by
a macro call in the op-code. The code generated is also
somewhat faster than the equivalent subroutine would be,
since the overhead of the CALL and RET is gone. On the
other hand, we’'ve used up quite a bit more memory than
the corresponding subroutine.

If this were the extent of macro capability, you might be
tempted to forget the whole thing. However, you can use
macros with arguments to generate tailored code to fit
the generalized case.

An example of such a macro is shown in Figure 3-3. This
macro will take a given character and fill a screen line
with it. The macro definition consists of the macro name
and MACRO pseudo-op as before, but it also has two
dummy arguments, CHAR and LINENO, representing the
character and the line number, 0-15, to be used.

00100 ; THIS IS A SAMPLE MACRO WITH ARGUMENTS

00110 : FIRST DEFINE THE MACRO WITH DUMMY ARGUMENTS

00120 FILL MACRO _ CHAR,LINENO

Q0130 | L w%:'“_‘ THIS PREVENTS DUPLICATE
Q0150 LD A,CHAR LABELS WHEN MACRO
00150 LD HL,3COOH+LINENO®6L 1S EXPANDED
00160 LD B, 64

00170 LOOP: LD (HL), 4

00180 INe HL

00150 DJNZ LOOP

00200 ENDM

00210 : NEXT, INVOKE THE MACRO WITH REAL ARGUMENTS

00220 FILL v ,0

64

oogo 3E 20 LD A,

0002' 21 3C00 LD HL,3CO0H+0%64
0005* 06 40 LD B,64
0007"' 77 ..0000: LD (HL}, & EXPANSION 1
coo8* 23 INe HL
0009* 10 FC DJNZ ..0000
00230 FILL tR1
000B' 3E 24 LD A e
000D' 21 3CHO LD HL,3COO0H+1%64
0010* 06 40 LD B,64 EXPANSION 2
0012 77 ..0001: LD (HL), A
0013 23 INC HL
0014+ 10 FC DJNZ ..0001
00240 FILL 88H,2
0016' 3E 88 LD A,88H
0018" 21 3C80 LD HL,3COQH+2%64
001B" 06 40 LD B, 6k EXPANSION 3
601Dt 77 ..0002: LD (HL), A
001E' 23 INC HL
001F* 10 FC DINZ ..0002
00250 END

Figure 3-3. Macro Use With Arguments

The arguments are called dummies because they only
serve to denote when you are to use “real” arguments
when the macro is called. When the macro is invoked, as
shown in the listing, “real” arguments replace the dummy
arguments, and specialized code is generated with the real
arguments put in the proper places in the code. Any
number of dummy arguments can be used in a macro,
subject only to line length.

It is not hard to see how to create macros to define an
entire applications language. The resulting code for the
application could consist primarily of macro calls, allowing
quick development time but at the expense of memory.

Hints and Kinks 3-4
More Complicated Macros

The macros used as examples in the text are
quite straightforward. The Disk Assembler,
though, has a number of macro operators,
conditional assembly pseudo-ops, and rules for
macro definition and use that may be used to
construct very powerful macros. Such things as
a NUL operator, to test for a null argument,
EXITM, to terminate a macro before a complete
expansion, and SET, to permit redefinition of
a variable name are but a few of the functions
that can be used to create truly horrendous
code!

65

Pseudo-Ops For Program Sections
and Conditional Assembly

The Disk Assembler adds a number of new pseudo-ops
other than those for EXT(ernals), ENTRYs, and macros.
Some of these are related to program sections and some
to conditional assembly.

Program Sections

The pseudo-ops ASEG, DSEG, and CSEG are related to
program sections. The Disk Assembler is initialized in
the “relocatable” mode; any code produced in this mode is
relocatable and can be modified by the loader at load time
to run wherever it is being loaded.

If the ASEG pseudo-op is used, however, all code following
will be in absolute mode. It will be assembled to run at
one specific area in memory. The ASEG is normally
followed by an ORG (Origin) to define the area of memory
at which the code is to be assembled.

ASEG iSET ABSOLUTE
ODRG BOOOH i5TART OF ABSOLUTE AREA

The CSEG pseudo-op defines a code relative section of the
program. This is the relocatable code section. CSEG is not
required unless an ASEG has been used, in which case you
should use a CSEG to force the Assembler back into its
default mode. You can intermix ASEGs and CSEGs as
needed.

The third pseudo-op of this type is the DSEG, or data
relative segment definition. Here again, DSEG should be
followed by an ORG to define where the data is to go. The
DSEG could be used, for example, to include all variables
and working storage in each program module in a separate
data-segment area of memory for convenience in debug-
ging.

Essentially, the Disk Assembler maintains three separate
location counters — one for the absolute, one for the code

66

relative, and one for the data relative sections of memory.

3-4, where the three types

d with relat

An example is shown in Figure

of program sections are use

ty.

ive impuni

$H3SA Pue ‘sHISI ‘SHISV 'v-€ ainbiy

td001

JATILYTIY JA0D LIXIN LV ST $S3UQAY FLON
£4001

"SSIYAQY ALn10SEV IXAN LV SI SSIUAQY IION
4

"DESE LSVT NVHL ZYOW INOC SI SSIHAQY IION
24001

ang
df :8d0071

9350
TssIaqy
*DAS) HAHIONY!
dpr €40071

DaASY
*DIASV HIHLIONY!
g430 fevivd

03asa
'DISE HIHIONY!
df 1240071

D480

*3qaon!

37GYLVI0TIH #TYHUONG XJ4I03dS 0L Q3sn "IATIVIIY HQOD ST SIHL!

3
HO0020

g4430 *IVivd
Dyo
Dasa

*YIVA aNY SETEVIHVAS
¥0d NOILDES VIV V AJIDEJS 0L QISH *NOILDAS VIVG ST SIHL!

14007
HO0O09

df 1140071
dyo
D3sy

‘3000 FLNT0SEY XJTDALS 0L QISN "NOILOAS FINTIOSEV ST SIHL!

0E€00
02£00
oLE00
00€00
06200
08200
0L200
09200
05200
oneoo
0€200
02200
0L200
00200
06L00
0gioo
0LLDO
09100
06L00
0hioo
0£L00
0200
0ii00
00100

1 €000

€008

10000

0008

€0

€0

20

£0

+E000
9008

€008
w2002

ul003
+£000

10000
4 t003

«000D

£008

0008

+ 0000

67

Conditional Assembly

Another set of pseudo-ops are concerned with conditional
assembly. Conditional assembly refers to a segment of
code that is either assembled or not assembled according
to some defined condition. Conditional assembly might be
used, for example, by a company that has many versions of
a software program. One segment of code might be neces-
sary if a user has a disk system, while another might be
necessary if the user has cassette. The section for a disk
system might appear as follows:

SASSEMBLE THIS CODE FOR DIGSK

IF DISK iDISK FLAG
DISKC LD A4S 5LOAD FLAG
ENDIF

If variable DISK is not zero, this code will be assembled. If
DISK =0, the code will not be assembled. The dots indicate
additional code in the segment. There are a number of
conditional assembly pseudo-ops including the REPT
(“repeat n times”) and IRP pseudo-ops. For information on
the rest, consult the Disk Assembler Programming Man-
ual.

68

Hints and Kinks 3-5
Elegant Pseudo—Ops

There are a number of pseudo—ops we
haven't talked about here, such as SET,
which allows an assembly time variable to
be redefined, REPT, which allows a block
of statementis to be repeated n times; and
LOCAL, which defines a local label within
a macro.

In my opinion, most assembly-language
programmers probably won't exercise the
full capabilities of the Disk Assembler by
using such '‘'elegant'’' operations. The
last time I used an elaborate scheme to
have the assembler generate a large
complicated table of data, I was awakened
at 2:00 a.m. by a call from the computer
operator. The operator informed me that my
(200-1line) assembly had been assembling
for 4 hours and asked if it was
‘‘normal''!

Pseudo-Ops for Listing Format

There are a number of pseudo-ops in the Disk Assembler
that make listings “prettier.” TITLE specifies a title to be
used on each page of the listing. SUBTTL allows the user to
specify a subtitle. PAGE causes a “page eject” to start the
listing on a new page; this is handy for isolating logically
different sections of code. .COMMENT may be used in place
of comment lines starting with a semicolon. The first
character of the following text is used as a delimiter and
the following text is used as a comment block until the
same character is encountered.

Several other pseudo-ops control listing output, macro
listing output, and cross-reference listing output. See the
Disk Assembler manual for details.

69

Using the Disk Assembler

After you have used the Editor to create assembly-
language source modules, the Assembler reads in a source
module from disk, assembles the code, and optionally
produces a relocatable object module and listing file.

The format for the assembly command is —

#*NAMEL +NAMEZ=NAMES
¥ NAMEZ2=NAME3
*NAMEL »=NAMED or
#=NAME3

In case this format’s confusing (I found it so), we’ll
interpret for you. The first command assembles source file,
NAME3, from disk and produces a relocatable object file,
NAMEL, and a listing file, NAME2, on disk. The listing file
may be listed by a PRINT command.

The second command does not produce a relocatable
object-file. The third command does not produce a listing
file. The fourth command produces neither a relocatable
object file nor a listing file (handy for assembly error
checks).

The names may actually be the same for all three. If a
source file is on disk called NAME/MAC, the command

#NAME +NAME=NAME

produces a relocatable object file called NAME/REL and a
listing file called NAME/LST. The file extensions are
automatically generated by the assembler. Of course, you
can also use passwords (ugh!) or disk drive numbers.

70

Hints and Kinks 3-6

CREF

We haven't mentioned the cross reference
facility of the Editor/Assembler at all.
It's not that it isn't useful, but it does
create another step in the assembly
process. You must set the CREF switch
during assembly by an assembler command
such as *TEST»TEST/C=TEST. The resulting
listing file has !‘‘'hooks'' in it that
enable processing by CREF. The result is
an alphabetized listing of the variable
names along with line numbers of lines in
which each is referenced or defined. Use
at your option.

Loading the Object Modules to Produce
Command File

Let’s assume we've gone through the assembly process for
the three modules shown in Figure 3-5.They make up a
horrendously complicated program to clear the screen,
print a title, read a key of 0-7, and output the key to the

a

center of the screen. Three modules were used here so we

could illustrate the linkages between the modules at load

time.

71

b

ang 65200
ONTGVIY AaNTINOD! 240071 ur 0hZ00 9L (9L00
L-0 qvay! avay TTYD 1240071 0£200 an JELOO
FTLIL INTHd! INT¥d 1Y 02200 as L0100
ANOQ LON 41 00! 14007 ZN ur 0Lzo0 0z L0060
JHOLSIH ! qa' 1 aay 00200 61 L Q000
S3|NPOIAN aN0Q L53L! aa‘n ong 06100 a3 (8000
Auuyo HyaIo! v i) 09100 Lg LVO00
aO@_.QO mE_U&OJ WINd dHngt Lo aNI 0L100 £z 16000
R MNVIE FHOLS! Vi) at o 09100 LL .g000
G-¢ mbs&rm Any gt sty a1 05100 3L, 9000
L+aNT NATYDS! ooon‘sa an 04100 [JE000
LYVLS N330St 000E‘ TN a1 s 0£1L00 12 L0000
Squay ‘LNIMd ONITIVO SKVTdSIA ANV Savay any 02100
ADVSSIN SLNINd ‘NIFHIS SHUVITO “UNILNOUW HIATHG NIVH 01100
avay *1NTd LXa 00100
ang 0£200
Sh (2100
JOYSSAN FNLILY 0°43TLIL. :{d 02200 L1 13000
FANTLNOD ! otorud ur 01200 gl $2000
¥ILNd YVHD dung! Fa ONI 00200 €1 18000
HLINd NIZHDS dWHAg! IH ONI 06100 £z LV000
¥3LOVUVHD FHOLS! ¥(1e) a1 08100 L 6000
anNd 41 NunLag! Z L3y 0l100 [:3e} 18000
oHdZ 404 LSdl! Y 4o 09100 JX:] 1 L0000
HILOVEVHO 139! (aq)‘y Q1 0LOTHG 05100 v 1 9000
$5IHAAY IOVSSAN! L9sK'aq an [T Lt (E000
LYYLS N3ZUDs! HOOOE*TH a1 :LNTud 0€100 12 10000
A7TLTL SINI¥d *INILAOH INTHJ 02100
INI¥d XHLING o0Lt00
LNIdd 3TLIL 06100
ana 00200
Nynldg: 13y 06100 60 12100
NA4¥DS NI d¥OLS!t v (HO23E) a1 08100 2€ 14000
ITOSV 0L LHIANCD! HOE ‘Y agy 64100 92 1a000
LInId 139! 4y [i] 59100 gL 10000
119 ¢ ON 41 09! 0LOY3Y DN ur 09100 o€ 1V000
1Td LNO LAIHS! vouY 06100 4o 16000
YALNNOD dnng!] ONI :plOVIH ohino 0 18000
¥ALNNOD! 1-fg an 0€100 90 9000
aNon 41 05t avay 'z ar 02100 82 4 1000
vy 1s3L! v ¥o 51100 g €000
=0 190! (HOLBE)Y 'Y al 01100 vE 10000
“SAVI4SIQ ONV L-0 SXEY Savd ¥ CENTIAOY Qvad 00:00
avd XYLNZ 06000
avay 3TLIL 05000

N
~

The modules are out on disk as MAIN, PRINT, and READ and
emulate the usual arrangement of modules produced while
using the Disk Assembler. The main portion of code calls
the other modules as subroutines. There could also be
ENTRY points in MAIN or EXTernals in PRINT and READ if
this were more complicated code.

The Loader is entered by typing L80 after the TRSDOS
prompt, TRSD0S READY. The chief commands to consider
in the Loader are the -P command, the -N command, and
the -E command. The -P command has the form -P:XXXX. It
sets the loader location counter to location XXXX. The -N
command has the form NAME-N. It establishes a name for
the command file. The -E command ends the edit, outputs
the linked relocatable modules to the disk as command
(/cMD) file NAME, and ends the edit.

The load sequence of commands is shown in Figure 3-6.
The load location counter is first set to 8000H by a -P
command. The three modules are then loaded by typing in
each name. Finally, the linked modules are output to disk
as TEST/CMD, and the load is ended. TEST can now be
loaded and executed from TRSDOS by simply typing TEST.

¥-P:8000

SET LOAD ADDRESS
*MATN

LOAD MAIN MODULE
DATA 8000 8018

SIZE OF CURRENT DATA
PRINT#* 8o11 READ* 8014

UNRESOLVED EXTERNS
*PRINT

LOAD PRINT MODULE
DATA g000 BozZC

SIZE OF CURRENT DATA
READ* go14

UNRESOLVED EXTERNS
*READ

LOAD READ MODULE
DATA B0 BO3F

. SIZE OF CURRENT DATA

*TEST-N, -E e

FILE NAME “TEST", END
(0000 803F)
DOS READY

Figure 3-6. Typical Load Commands

73

Figure 3-6 also shows the loader symbol table displayed
after each load. This lists all unresolved symbols in
addition to the memory area loaded. At the end of the load,
all externals should have been resolved, or a load error
will result. If any external is unsatisfied, it means that a
module referenced an external name by an EXTern, and
there was no corresponding ENTRY point. This may mean
that you did not load the module containing the name, or
that you didn’t declare the name in an ENTRY. Either
condition is an error.

The procedure above is the loading process in microcosm
for any size assembly-language program. The Tic-Tac-Toe
program in Chapter 14 uses 25 separate modules with a
large number of ENTRY points, yet the procedure is vir-
tually identical.

The “core image” of the three modules above is shown in
Figure 3-7. All addresses have been satisfied during the
load process, and the program appears as one contiguous
program block.

READ ADDRESS
START OF MAIN

END OF MAIN
START OF PRINT
PRINT ADDRESS

20§77 23 BT ED 52 19 20 F8
8010 cD 18 80/CD FBf21 00 3C 11_26 80 14 BY
8020 €8 77 23 13 49 54 4C 45 00f3A 10 38 _B7
8030 28 FA 06 FF 04 OF 30 FC 78 €6 30 32420 3E C9JFE

8000 21 00 3C /11

END OF PRINT

START OF READ END OF
READ

Figure 3-7. Core Image Module

74

Chapter Four

Loading, Executing, and Debugging
Assembly-Language Programs

Up to this point we've talked about general considerations
in producing programs using EDTASM and the Disk
Assembler — how to edit, assemble, and list source files.
We’ll move on to discuss the next step, loading and
executing the resulting object code. You can run
assembly-language programs as “stand-alone” programs or
interface them to BASIC programs. This chapter describes
both methods. We also cover “debugger” programs and
some tricks in debugging techniques. In short, we’re going
to talk about the subject, “Now that I have the assembled
program, what do I do with it?”

EDTASM System Tapes

The result of an edit and assembly using EDTASM is a
SYSTEM file on cassette. A SYSTEM file resembles the
machine-language code seen on the EDTASM listing. It
contains other data, however, to enable the Level 11 BASIC
interpreter to load the machine-language code into the
proper place in memory and verify the data as correct. The
format for SYSTEM tapes is shown in Figure 4-1.

75

T —T

255 BYTES L
OF ZEROES

byY
39,

SYNC BYTE = A5H

55H

FILE NAME IN r FIRST “"LOGICAL" RECORD
 ASCH PADDED TO %,
6 BYTES W/BLANKS

b))

\

3CH

BYTES IN RECORD

SECOND AND Nth LOGICAL

- LOAD ADDRESS -+ RECORDS

MACHINE-LANGUAGE |
: BYTES 4

)

CHECKSUM

OTHER POSSIBLE
N ——— m/ “PHYSICAL” RECORDS
EACH WITH ZEROES.

SYNC BYTE

\5\
\

78H

ENTRY POINT LAST LOGICAL RECORD

ADDRESS
——
W
Figure 4-1. SYSTEM Tape Format

A string of 255 zeroes are at the beginning of the cassette
file, followed by a sync byte of A5H. The sync byte
synchronizes the cassette tape driver of the BASIC inter-
preter — informing it that the next byte will be valid data.
The zeroes and sync byte precede each physical record on
the SYSTEM tape. A SYSTEM tape may have one or more
physical records, depending upon the size of the object file.
Each physical record is divided into a number of logical
records, which are essentially load item blocks defining
file name, data, or entry point. After the sync byte of the
first logical record, a file name code of 55H occurs. This
informs the interpreter that a file name will appear-in the

76

next 6 bytes. The file name is 6 bytes long, padded out
with blanks. This is the first logical record of the SYSTEM
tape.

The next logical record is headed by a data code of 3CH.
This informs the interpreter that machine language data
follows in the record. The next byte in the data record is a
count of the number of data bytes in the record. If this byte
is a zero, the number of data bytes is 256, otherwise the
count is the actual number. The next two bytes are the
load address for the data to follow. They're set in standard
address format, least significant byte followed by most
significant byte. Next are the machine-language bytes.
The last byte of each data record is a checksum byte. A
checksum is nothing more than a “check byte” formed by
adding all of the individual data bytes. It is used for
comparison to another add of the data bytes on load to
verify that the data has been loaded properly.

The last logical record on the SYSTEM tape is an entry
point code of 78H and two bytes that represent the entry
point for program execution.

Hints and Kinks 4-1
An Actual Cassette Object File

The data below represents an actual cassette
SYSTEM file produced by assembling the program

below onto cassette.
Cc000 081760 ORG 0C0o00H
08770 ;
GB780 ;¥¥exs¥ssvssrrasaprI]) CHARACTER SUBROUTINESS#NEXREssunsns

08790 ;# FILLS DESIGNATED AREA WITH GIVEH CHARACTER #
08800 ;% ENTRY: {A)=CHARACTER ®
08810 % {DE)=AREA *
08820 ; # {BC)=NUMBER OF BYTES, 1-65%2%; 0 1S 65536 %
08830 ;% ALL REGISTERS SAVER EXCEPT EC,DE *
0884¢

€poQ 12 08850 FILLCH LD {DE), A ;FILL CHARACTER

coot 13 08860 Ine DE ;BUNP PCINTER

cog2 0B 08870 DEC BC sDECHENENT CQUNT

€003 F5 08880 PUSH AF JSAVE FILL CHAR

coon 78 08890 LD A, B ; TEST FOR ZERQC

€005 B1 08900 OR C

€006 2603 06910 JR Z,FILO1C ;GO IF DONE

coo8 F1 0892¢ POE AF ;RESTORE FILL CHAR

C00g 18F5 08930 JE FILLCH s CONTIRUE

C00B F1 08940 FILOQ1O POP AF ; RESTORE A

cooc €9 08950 RET sRETURH

Coo0 08960 END FILLCH

C0000 TOTAL ERRORS
FILE NAME CODE DATAAC?YEYES FOLLOWING CHECKSUM R PomT

syne, BY%Ams-nwts’ *Lg:; ADDRESS = CgpP \ VA ENIR
«ﬁﬁlps[ss]% 49 4cHC mm‘sclﬁ o0 cgluz (3B F578 Bl 28f3F1 18 F§ cq]mlva]w c¢l (END)

MACHINE-LANGUAGE ENTRY POINT =
CODE 53004

77

The SYSTEM tape format is identical to that produced by
T-BUG, the debugger program for cassette-based systems.
T-BUG has the capability of producing such a file by the P
(punch) command. Conveniently enough, T-BUG can also
load in the cassette file by the L command. This means
that the object tape produced by EDTASM can either be
read by using the BASIC SYSTEM command or by T-BUG!

System Considerations for
EDTASM Object Files

EDTASM object files represent one huge program. The start
of the program is defined by the ORG (Origin) pseudo-op at
the beginning of the program. The size of the program can
be determined by the location column on the listing. You
can put buffer areas and working storage for variables
and tables anywhere in the program that you want. There
may be a large “open-ended” buffer or buffers in the
program, generally at the end of the program to build “up”
into higher and higher memory. You can see an example
of this structure in MORG, the EDTASM program of Chapter
13.

What should the value be for Origin? This depends upon
the environment in which you are going to use the
assembly-language program. If your system does not have
disk, and the assembly-language program does not inter-
face to a BASIC program, then the program may be ORGed
at 4980H. T-BUG occupies the area from about 4380H through
497FH, with an internal stack area building downwards
from 497FH. When the program is debugged using the
T-BUG stack, the program may use all of memory for
storage from the end of the program up to top of memory.

You might be curious about establishing your own stack
area. You can do it. In this case, set aside approximately
100 bytes at some convenient point either in your pro-
gram, at top of memory, or in some area of memory that
you know won’t be used. The stack should be initialized
immediately with a

START LD SP,PEND+100
78

s

or similar instruction (here the stack has been set to the
end of the program plus 100 bytes). Remember, the loca-
tion loaded into the stack pointer represents the first
location to be used by the stack plus one.

Hints and Kinks 4-2
Size of Stack

Many programmers ask ‘"How big should the
stack area be?'' There's no definitive answer.
Each time a CALL 1s made, the two bytes of the
return address are pushed onto the stack. Each
time a PUSH instruction is executed to
temporarily store data, two bytes of a
register pair, IX, or IY are pushed onto the
stack. A third function that pushes data onto
the stack is interrupt action. This can occur
in a disk system with the real—-time-clock
enabled. The ‘‘worst case'' number of bytes
used, therefore is:

2% (number of calls active at any time +
maximum number of pushes active at any time +
possible interrupt)

If 100 bytes are allocated, this allows for 350
CALL/PUSH/interrupt levels, which are
probably more than adequate.

The configuration for assembly-language programs in this

type of environment is shown in Figure 4-2.
LOCATION

4 L ROM, VIDEO, L
ECT.
/ BEGINNING OF T-BUG=438@H
1o K
(H2BGH) G
END OF T-BUG=487FH

32K
(88ZAM)

48K
(CagPH)

64K -
CEELY-L) Figure 4-2. AL Programs in
Minimum Configuration
Systems 79

If the program is to be used together with a BASIC program
in a non-disk system, then there are two considerations.
First of all, the ORG can’t overlap the BASIC program area.
The BASIC program builds up in memory from about 4200H
on. The program statements aren’t the only things occupy-
ing memory, however. Simple variables, arrays, strings,
and a BASIC interpreter stack are also stored, as shown in
Figure 4-3.

LOCATION

d ROM, VIDEO,
ETC.
BASIC PROGRAM
16K WORKING STORAGE A/ STARTS AT ABOUT
(48PBH) 4200H
BASIC PROGRAM
TEXT
| SIMPLE VARIABLES | ™\
~~~~~~~~ <> THESE BOUNDARIES
ARRAYS CHANGE “DYNAMICALLY”
L e e — ] WHILE BASIC PROGRAM
32K IS RUNNING
MEMORY
48K I A I gy vt
(Cogan) BASIC STACK USES STACK
STRING STORAGE V\ THIS BOUNDARY FIXED BY
AREA “CLEAR"”
RESERVED FOR [ -
MACHINE LANGUAGE THIS BOUNDARY
4K USER IN “MEMORY SIZE”
I ¢¢¢¢ [zD) INPUT
Figure 4-3. BASIC Memory
Allocation

Compute the ORG for the assembly by taking the size of
the assembled program plus any buffer areas or tables
outside of the program and subtracting it from your
system’s top of memory plus one (8000H for 16K, C000H for
32K, or 10000H for 48K). You may use the BASIC stack with
no problem; if you establish your own stack area, add this
into the total size to be subtracted.

Assemble the program with this Origin, and protect this
memory area by entering the Origin value for
MEMORY SIZE when BASIC is first entered. The stack area

80




for BASIC will now build downwards from the Origin
minus one location.

A special case arises when the assembly-language pro-
gram uses machine code embedded in the BASIC program.
In this case, a short assembly-language program becomes
part of the BASIC program itself and can be loaded easily.
We'll talk about these techniques in the next chapter.

Debugging With T-BUG

After you edit, assemble, and thoroughly desk-check your
assembly-language program, you should load it along with
Radio Shack’s cassette based debugging program, T-BUG.
The procedure is simple:

1. Enter Level 11 BASIC.

2. Enter the area of memory to be protected
(MEMORY SIZE), computed by the procedure
above.

3. Type SYSTEM for the “>” prompt. This causes
the BASIC interpreter to enter the monitor
mode.

4. Rewind your object tape and prepare for a
load.

5. Enter NAME after the *? prompt. NAME is the
name you've given your object file for assembly.
If you haven’t named your file, the cassette file
will be called NONAME.

6. Your object tape should now load, as indicated
by the blinking asterisk.

7. After a successful load, ready the T-BUG cas-

sette.

Enter TBUG after the *? prompt.

The T-Bug file should now load, followed by

the *? prompt.

10. Enter / after the prompt.

11. T-BUG should now be entered, as evidence by a

# prompt.

©w oo

With both T-BUG and your object program in memory,
you're ready to do some serious debugging. (This procedure

81



can’t be used when a BASIC program is also resident, as the
BASIC program will “overlay” T-BUG.) First of all, you
should be familiar with T-BUG commands. These are
described in the T-BUG manual, and we won’t study them
here, but we’ll tell you how to make efficient use of them.

Hints and Kinks 4-3
Recap of T-BUG Commands
#M aaaa Display location aaaa
ENTER {after M) Display next location
X (after M,J,B,P) Exit operation
#R Display registers
#P aaaa bbbb cccc Write cassette from aaaa
NAME through bbbb with starting
address cccc and file name
NAME
#L Load a T-BUG or SYSTEM tape
#B aaaa Set breakpoint
#F Restore instruction after
breakpoint
#G Continue from breakpoint
#J aaaa Jump to location aaaa

The first rule of debugging is to be sure you've thoroughly
desk checked the program. This means you've taken a
listing of the program and gone over it minutely, instruc-
tion by instruction, to see that it works as planned. This
may mean some reference to flow charts and design specs
with larger programs.

After desk checking as much as possible, the procedure is
basically, “Get it working (even though it probably will
run badly) then go back and clean up the flaws.” This
procedure works well as long as the program design is
substantially correct, and there isn’t an overabundance of
errors.

To get the program working, use a type of “binary search”
for flaws. First of all, go ahead and give it a try. Chances
are that the program will blow up, but it takes an
extremely strong-willed programmer not to try that first

82




execution in hopes that everything will work right off the
bat. (It never does!) Reload the program if necessary.

Having gotten that out of your system, set a breakpoint
about half way through by using the T-BUG B(reakpoint)
command. If, for example, the program is about 100
locations long, set a breakpoint at a location 50 bytes from
the start of the program. Now use the J(ump) command to
start the program. One of two things will happen. The
program may “bomb” again, necessitating a reload, or the
breakpoint will be reached.

If the breakpoint is reached, F(ix) the breakpoint and start
looking at variables and “tracks” of the program up to that
point. See that variables and actions appear to be correct.
If you find strange results, write them down and start
correcting them one by one by setting new breakpoints at
an earlier condition. Don’t be too picky about testing every
possible condition.

Hints and Kinks 4-4
How Does T-BUG Breakpoint?

When you put a breakpoint at a specific
location, T-BUG puts a CD BO 43 at that
location and the next two bytes. This is a
'CALL 4380H'' that calls the T-BUG breakpoint
routine. F(ixing) the breakpoint restores the
original three bytes.

Be careful in breakpointing that the three
bytes temporarily destroyed in breakpointing
are not used as variables or instructions by
the code to be checked.

If results seem to be correct on cursory looks up to this
point, set a breakpoint about half-way into the remaining
area, and repeat the procedure. Zero-in on the errors in
the same fashion.

Patching
You have two alternatives in correcting errors as theyre

83



found in the program. You can reassemble and reload, or
you can patch. If you have never used a patching tech-
nique; stay tuned and we’ll explain with an example.

Figure 4-4 shows an EDTASM program from MORG in
Chapter 13 with two errors. The subroutine is missing an
OR C, and the JR ZsFIL0O10O 1is erroneously
JR NZ+FILO190, (Obviously I had a thorough desk check
here!)

8583 08770 ORG 858311
08780 ;#RUETAEEFINARLRIFILL CHARACTER SUBROUTINE®##assssszesss

08790 ;* FILLS DESIGNATED AREA WITH GIVEN CHARACTER

08800 :* ENTRY: (A)=CHARACTER
08810 ;% (DE)=AREA
08820 :* (BC)=HUMBER OF BYTES, 1-65525; 0 IS 65536
08830 ;¥ ALL REGISTERS SAVED EXCEPT BC,DE
08840 ;
6583 12 08850 FILLCH LD (DE), A ;FILL CHARACTER
8584 13 08860 ILc DE ;BUIP PCINTER
8585 0B 08870 DEC BC ; DECREMENT COUNT
8586 ¥5 08880 PUSH AF ;SAVE FILL CHAR
8587 78 68890 LD A,B ; TEST FOR ZERO
08900 ; OR c JEEELISSINGEE®
6588 2003 08910 Jn #2,FIL0OI0 ;GO IF DONE®*®5S/p Z¥%#
584 F1 08g20 POP AF ;RESTORE FILL CHAR
858¢% 18F6 08930 JR FILLCH s CONTIKUE
858D £1 08940 FILOIO POP AF ;RESTORE A
858E C9 08950 RET ;RETURN
08960 ;
0000 08970 END

00000 TOTAL ERRORS

Figure 4-4. Flawed Program

In testing the program, we loaded the A register with Z3H,
the DE register pair with 8000H, and the BC register pair
with 64H to fill locations 8000H-8063H with 23H. We break-
pointed on the RET by B858E. When the breakpoint was
reached, it turned out that only the first byte at location
8000H had been filled.

In checking through the code, we found that the
JR NZ+FILO10 should have been a Z. Rather than
reassembling, we decided to patch the code. The
JR NZ+FILO1O assembles as 2003H. By looking in
Appendix II (or the Assembler manual), we found that a
JR Z would be 28XXH. This is simple to fix using T-BUG —
we simply perform a M BS588 20 2B to change the
location to a JrR NZ+FIL010 and record the patch in a
list of patches.

Having patched, we tried again. This time, with an iden-
tical procedure, we found 23H stored from 8000H through

84

#
H

w w




8583H! It seems 23H was stored until the program was

destroyed! After further head scratching, we found that we
had left out an OR C instruction!

This time we found we couldn’t easily patch because we
couldn’t fit in another one-byte instruction between the
last bit of location 8587H and the first bit of location 8588H!
How do we patch in this case?

In cases like this, we can jump out to a patch area, “gin
up” some code to make the change, and jump back into the
routine. A patch area is any unused area that can be used
to store temporary fixes. In this case, since we weren’t

using locations C000H and up, we designated that as a
patch area.

To get to the patch area, we had to put the three bytes of a
JP somewhere in the code. We put them into the locations
that would have normally held DEC BC as shown in
Figure 4-5. We deleted the three instructions of DEC BC ,

PUSH AF, and LD A:B and substituted a JP COOOH
instead.

Location Oid Patched
8583 12 12
8584 13 13
8585 2B DEC BC |C3 JP COD@H
8586 F5 PUSHAF | @0
8587 18 LD AB |CO
8588 28|03 2803
858A F1 Fl
858B 18F6 18Fb6
858D Fi Fl
858E c9 Ccq

PREVIOUSLY
PATCHED
JAZ, FILG10

Figure 4-5. Patching to
Flawed Program

85



How did we know what code to put in for the JP? By con-
sulting the Appendix, by referring to the Assembler
manual, or by looking through the listing until a
similar type instruction was found!

At the C000H patch area, we put in machine code repre-
senting the three deleted instructions, machine code for
OR C, and a JP back to location 8588H, as shown in Figure
4-6. You can patch virtually any program this way.

Hints and Kinks 4-5
Hand Assembling

There are still some programmers that I
know of that persist in !'‘hand
assembling.'' These are the same types of
people that collect balls of string eight
feet in diameter, cultivate their own
wheat in their city plot, and try to
interface Baudot teletypes to their
TRS-80s

What we are doing in patching is a small
exercise in '‘hand assembling.'' Instead
of letting the assembler look up opcodes
and resolve addresses, we are doing it
ourselves. Hand assembling is not too much
of a chore in this case, since we're
working with only a few instructions. We
can simplify 1t by looking at our listings
for identical or similar instructions and
use thelir formats to make the patches.
However, when there are many instructions
to be assembled, it's probably best to let
the assembler do the job — even to the
extent of running a short assembly to get
the patches! I've spent too many nights at
some customer's site hand assembling
patches into a computerized system to
advise you differently. Help stamp out
hand assembling!

86




LOCATION CONTENTS CODE NOTES

Coo3 7B DEC BC }
‘ FE PUSHAF o el
\% g? l(—)IPJ\ é & NEW INSTRUCTION
4 C3 JP 8588H
5 88 } JUMP BACK
6 85

Figure 4-6. Patch Area Contents

With the patch in place, we tried the subroutine again,
and it worked fine for the one case.

This patching process requires some effort, and you may
not want to use it. However, you can become very pro-
ficient at it and use it to advantage to debug large pro-
grams that take a great deal of time to reassemble because
of printing time. Hard thinking vs. time: it’s a tradeoff
youwll have to assess.

A patched program can be written out to cassette at any
time. The advantage is that the patches don’t have to be
reentered when the program blows up the next time.
Also, as long as you’re writing out to cassette, why not
include the T-BUG area along with the program area? That
way the entire program area, T-BUG and all, can be read in
by a SYSTEM command to simplify reloading. The entry
point for T-BUG is 17312 decimal.

Disk Assembler Files

The final output of a set of edits and assemblies and a load
operation with the Disk Editor/Assembler package is a
command file (/CMD) on disk. You can load and execute
this command file by simply typing the name of the file
after the DOS READY prompt. In most cases, however, you
must do some debugging before the program is ready to
run in this fashion.

The memory area specified to the Loader is, like EDTASM
programs, dependent upon the environment in which you
are going to run the program. Since the program will

87



normally be loaded by TRSDOS, it must not overlap the
TRSDOS area, which usually ends at 6FFFH. This will
enable DUMP commands to be used to save patched ver-
sions of the program.

If the program is to run “stand-alone,” without interface to
Disk BASIC, then the area from 7000H through top of
memory is available for program use. This won’t conflict
with use of the Disk DEBUG package, as it loads into an
overlay area below 7000H. If DEBUG were used for
debugging, its stack area would be internal to the DEBUG
program and wouldn’t conflict with program use of the
7000H and up area. Of course, a separate stack area could
be maintained by the program if you want. This configur-
ation is shown in Figure 4-7.

LOCATION
]
,  ROM,viDEO, L
T ETC. I
16K
48GpHY L TRSDOS, L
(4009 OVERLAYS T, 5\ gr snos
7¢ﬂ¢H AREA AT 6FFFH
32K
(8oooH)
H48K
(CRPBIH

04K
G@pgan)
Figure 4-7. AL Programs in

Disk Systems Without
BASIC Interface

If you're going to use the program together with Disk
BASIC, then the area from 7000H on is used for storage of
the BASIC program, simple variables, arrays, strings, and
the stack as shown in Figure 4-8. This allocation scheme is
identical to Level II BASIC, except that the memory allo-
cation area starts higher in memory.

88

P
o,

.
5
k5




LOCATION

g
ROM, VIDEO,
ETC.
16K
(4888 H)
TRSDOS,
OVERLAYS BASIC PROGRAM
TS AT ABOUT
70004 BASIC PROGRAM aaon
32K
(edgpHy | _ X1 _ |
SIMPLE VARIABLES | \_
________ leg——= THESE BOUNDARIES
ARRAYS CHANGE "“DYNAMICALLY"
e _%..__ A WHILE PROGRAM RUNNING
FREE
MEN{ORY
48 K i
(CEBPH) o { __ ] g~ THIS BOUNDARY CHANGES
- B ASIE..ST:Q_CK - AS BASIC INTERPRETER
USES STACK
STRING STORAGE ‘\
BOUNDARY
RESE?:/E?) FOR ;‘;"?CL%ASP "
b4 K MACHINE LANGUAGE Iglsszog;«g»;:; |E:TAB-
(1 P@FIH ) “MEMORY SIZE"” INPUT

Figure 4-8. AL Programs in
Disk Systems With BASIC
Interface

The plan here is for you to specify the load address high
enough in memory for both BASIC and the assembly-lan-
guage program to coexist peacefully. Compute the loading
address by making a test load and observing the size of the
final configuration. Add to this size any external buffer or
table areas and approximately 100 bytes for an external
stack, if one is to be used. Subtract this total from the top
of memory value plus one. The result is the load address
youwll specify to create the command module for the pro-
gram. This process is shown in Figure 4-9. In many cases,
of course, youll have more than enough memory to be
fairly “sloppy” in specifying the load address.

89



ETC.

I

BASIC
STACK

ADLD%AEDSS “MEMORY SIZE"

STRING LT
\\ STORAGE

PROGRAM
AREA } oY TEaT LoD

BUFFER OR
TABLE AREAS

AS REQUIRED BY
PROGRAM

EXTERNAL STACK
USED BY PROGRAM

ALLOW 100 BYTES

TOP OF
MEMORY

64K,
48K,
32K

Figure 4-9. Computing the
Load Address

Debugging with DEBUG

Once you've created a command module, you're ready to
begin debugging. Actually, you should have already done
the bulk of the debug! Prior to using DEBUG, you should
have done a thorough and detailed check of your
assembly-language code. This desk check will usually
reveal errors in logic and implementation that will be much
easier to correct by reassembly than by patching during
debugging.

90

g

g




Hints and Kinks 4-6
Desk Checking

A typical desk check would involve reviewing
the specs and flow charts, together with the
program listing(s) to see that no logical
errors have been made.

Next, you might start with the simplest
subroutines and ‘'‘'walk through'' them,
instruction by instruction, using sample data.
Write the contents of each register down on
paper as you follow the instructions. Work
your way up through the program levels until
you've gone over all the code once. Reassemble
if necessary.

Next, go through the same process again. Look
for errors! They're there. (It might help to
pretend that it's someone else’s code.) This
process should be repeated until you've gone
through all code once without finding new
errors. Yes, this i1s a lot of work. But it's
much easier to correct errors now than during
program execution.

When you're satisfied, start the actual
‘‘on-line'' debugging. You'll probably say
'iWhat a stupid error — I should have seen
that!'' (It always happens tome . . . .)

To use DEBUG, first load DEBUG by typing in DEBUG after
the TRSDOS DOS READY prompt. Then type in the name of
the load module you created during the loading process to
load it into memory in the area you specified. Now hit
BREAK, and you will be in DEBUG.

The Disk DEBUG is quite a bit more powerful than T-BUG.
Probably one of its most useful features is the ability to set
multiple breakpoints. T-BUG allowed only one
breakpoint, making it fairly easy for the program to take a
path to oblivion. In addition to breakpointing, DEBUG
allows for modifying memory or registers, displaying areas
of memory in ASCIH or hexadecimal, and single-stepping

91



the program one instruction at a time. These functions are
described in the TRSDOS and Disk BASIC manual, and we’ll
be giving you some more examples of their use here.

Hints and Kinks 4-7

Recap of DEBUG Commands

A Show display in ASCII

C Single step instruction,
CALLs in full

Daaaa<space> Display from location aaaa

Gaaaa(,bbbb Execute at location aaaa with
{,cccc)) optional breakpoints
bbbb, cccc, .
H Display in hexdecimal
I Single step instruction

M(aaaa)<space> Set modification address to aaaa
and display data

Rrp dddd Load register pair rp with dddd
<space>

S Set display to full screen

U Set dynamic display update mode

X Cancel command, set display to

register mode
Increment memory display to next
block
- Decrement memory display to last
block

The debugging process with DEBUG is very similar to the
one described under T-BUG use. The approach is again to
focus in on failing areas of the program by a type of
“binary search.”

Start execution of your program by entering a G(o)
command to DEBUG, with one or more breakpoints
specified. If the program gets to the breakpoint, go back
and look for “tracks” of proper program operation — flags
set properly, variables and buffers with correct values, and
the like. If errors are found, concentrate on the failing
area by setting a breakpoint prior to the error and
observing results. If the program doesn’t get to the

92

i
é i
%!: o

i




breakpoint, hit BREAK to get back to DEBUG and then try
another execution with an earlier breakpoint.

The DUMP command can be used to advantage in
patching programs. (If you skipped over the discussion of
patching under T-BUG, you may want to read it to get
familiar with the technique.) When your program has
been patched, you can save it on disk by doing something
similar to:

DUMP NAME (START=X'8000' END=X'9A43") .,
This creates a new file on disk with name, NAME, and
extension, /CIM (Core Image Module). You can now load
this patched file eliminating a tedious patching operation
each time the program “blows up.”

Hints and Kinks 4-8
How Do You Know Where A
Relocatable Program Is?

One of the problems in link loading is knowing
where a location is. Subroutines can be found
by looking at the load map listing of all
globals {loader M command). Record this
information after the load.

It's also easy to put in global symbols, not
only for subroutines but also for other
selected points in the program. These will
then be displayed on the load map, and you'll
avoid some hexadecimal arithmetic.

A second trick is to use the -P command to
load each module at convenient locations such
as 8000H, 8200H, 8400H, etc. This makes the
hexadecimal arithmetic a little easier.

To use DUMP, G(o) to location 402DH. This reboots TRSDOS
but does not affect any of the user memory area. Now
enter the DUMP command with the proper memory limits
specified. By the way, if you've patched outside your
program area, be sure to include that area by altering the
START or END address accordingly.

93



The DUMP command is best used with a “clean” program.
When you have found an error and established the proper
patch, reload the program; do not execute and make the
patches and then DUMP the patched, unexecuted program.
This will eliminate strange results caused by patching an
altered program.

However, if you want, you can also use the DUMP to save
the state of any program at any given time during
execution. This enables you to load in the program and
easily reconstruct the conditions that caused the blowup.

Interfacing Assembly-Language and
BASIC Programs

Level II and Disk BASIC both have the capability of calling
assembly-language programs while in the middle of BASIC
program execution. This means that time-critical parts of
the BASIC program can be coded in assembly language to
speed up program execution, or that BASIC can be used for
operations which are harder to code in assembly language,
such as string input, report display, and “number-crunch-
ing.”

Level II USR Calls

The Level II procedure for calling an assembly-language
program is as follows:

1. POKE the address of the assembly-language
routine to be called into locations 16526 and
16527. The two bytes represent the least signi-
ficant and most significant bytes of the address
in standard Z-80 address format.

2. Any time a call to the assembly-language
routine is required, call the routine by a state-
ment such as A=USR (M),

The USR function uses two arguments, A and M. These can
be “dummies.” For example, a call to the assembly-
language routine can be made by A=USR (@) with
variable A being ignored. The USR function simply causes

94

e .
R




the BASIC interpreter to pick up the address from locations
16526 and 16527 and execute a CALL to that address. The
assembly-language routine must have a RET at the end to
cause a return back to the interpreter at a point after the
CALL. Figure 4-10 shows a typical Level II USR sequence
for a short assembly-language routine located at location
COOOH.

100 REM CALL WVRITE BOOK KOUTINE AT COOOH

200 REM FIRST POKE LEAST SIGNIFICANT BYTE OF ADDRESS

300 POKE 16526,0

400 REM MEXT POKE MOST SIGNIFICANT BYTE OF ADDRESS

500 POKE 16527,192

600 REM NOW CALL ROUTINE BY USR FUNCTION

700 A=USR{M)
800 REM RETURN AFTER USR ROUTINE HERE

Figure 4-10. Level I
USR Sequence

You can make calls to more than one assembly-language
routine easily by setting up 16526,7 with the proper
address just prior to the USR call. You can use as many
assembly-language routines as you need by preceding each
call by a POKE of the address into 16526,7. Of course, if
you use only one assembly-language routine, you only
have to set up 16526,7 once at the beginning of the BASIC
program.

The M argument allows the BASIC program to pass one
16-bit argument to the assembly-language routine. The
calling sequence is the same except that M must be a
variable (or expression) that is equated to -32768 to 32767.
When the assembly-language routine is entered, it must
pick up the argument by performing a CALL to ROM at
0A7FH. This CALL passes the 16-bit argument back in the
HL register pair.

If you wanted to pass the argument back the other way —
in this case, pass a 16-bit value in HL back to the BASIC
program — you would make a JP 0A9AH at the end of the
assembly-language program rather than a RET. Figure
4-11 illustrates the passing of a single argument back and
forth; here, a variable passed to a shift routine. The shift
routine shifts the value three bits left and passes back the
result. The BASIC program then displays the result on the
screen.

95



€ooo 00100 ORG 0C000H
00110 ;SHIFT ROUTINE. SHIFTS CONTENTS OF HL LEFT 3 BITS AND

00120 ;PASSES BACK THE RESULT

C000 CDTFOA 00130 SHIFT CALL OATFH ;PICK UP ARGUMENT

€003 29 00140 ADD HL,HL ;SHIFT ONE BIT POSITION
€004 29 00150 ADD HL,HL 3SHIFT TWO BIT POSITIONS
coos 29 00160 ADD HL,HL ;SHIFT THREE BIT POSITIONS
C006 C39A0A 00170 Jp 0A9AH ;RETURN ARGUMENT

0000 g0180 END

00000 TOTAL ERRORS

100 REM TEST PROGRAM FOR SHIFT ASSEMBLY LANGUAGE PROGRAM
200 POKE 16526,0

300 POKE 16527,192

400 INPUT "VALUE=";M

500 A=USR(M)

600 PRINT "ORIGINAL=";M,"SHIFTED RESULT=";4A

700 GOTO 400

Figure 4-11. Assembly-Language/BASIC
Argument Passing

Disk BASIC USR Calls

The procedure for interfacing assembly-language pro-
grams to Disk BASIC is much the same as that for Level II
BASIC. The chief difference is that more than one USR call
is permitted. The format of the Disk BASIC USR call is
¥=USRn (M) where n is 0 through 9, permitting ten
separate USR calls. Each USR call is first defined by a
DEFUSR function of the form DEFUSR=&HXXXX where
XXXX is the address of the assembly-language subroutine
in hexadecimal format.

The CALL to 0A7FH to pass an argument from BASIC to the
assembly-language routine and the JP to 0A9AH to pass an
argument back to BASIC is the same as in Level IT BASIC.
The sequence for the same assembly-language program as
above is shown for Disk BASIC in Figure 4-12.

100 REM TEST PROGRAM FOR SHIFT ASSEMBLY-LANGUAGE PROGRAM
206 DEFUSR0=&HCOGO

300 INPUT "VALUE=";M

400 A=USKO(M)

500 PRINT "ORIGINAL=";H,"SHIFTED RESULT=":A

600 GOTO 300

Figure 4-12. Disk BASIC USR
Sequence

96

s

g
- -




Handling Multiple Arguments

Many times it is necessary to pass more than one argu-
ment between Level II or Disk BASIC and an assembly-
language routine. Since the USR call permits you to pass
only one 16-bit value, how can you pass multiple argu-
ments? There are a number of different ways to
accomplish this.

Packing Arguments

First of all, arguments may be packed into 16 bits. If, for
‘example, an x and y screen position must be specified, then
two 8-bit fields, one in H and one in L may be used. If you
need four arguments and they can be held in four-bit
values, then you can use 4 four-bit fields in HL.

Figure 4-13 shows the technique of storing data in a
common memory area in an example that SETs a series of
points in the assembly-language routine. The points are
defined in a table starting at location 32700 and

terminated with a -1.
000 00100 ORG QCo00H
00110 :.‘ll.lIIl!I.Q“'lI‘Ililllﬂlfl.l!‘i!llllll!l‘.'i!lillllll

00120 ; ROUTINE TO PUT AN "O" IN DISPLAY.
00130 ; ENTRY: BASIC HL LINKAGE POINTS TO TABLE OF ADDRESSES

00140 EACH TABLE ENTRY IS SCREEN CHARACTER POSITION
00150 ; TO BE SET. TABLE TERMINATED BY -1.
00160 ;BRNNREEE s RN N R RN R R R R E RN TN R R NN R RN RN RN R RN R R NO RN
00170

€000 CD7FOA 00180 SETO CALL QATFH $GET ADDRESS OF TABLE

€003 E5 00190 PUSH HL sHOW IN STACK

CQ04 DDE1 00200 POP IX sNOW IN IX

C006 DD6601 00210 SET010 LD H,(IX+1) s HMS BYTE

C009 DD6EOO 00220 LD L.(I%+0) ;LS BYTE

cooC 7¢C 00230 LD AR ;GET M5 BYTE

C00D FEFF 0Q240 cp OFFH ;TEST FOR END

COOF C8 00250 RET z :GO IF DONE

€010 3E4F 00260 LD A, 0! 10 FOR STORE

co1z 77 60270 LD (HL) A $STORE ©

€013 pD23 00280 IKC IX ;BUMP PNTR

€015 DD23 00290 INC IX ;TUICE

€017 18ED 00300 JR SETQ10 iCONTINUE

0000 00310 EHND
00000 TOTAL ERRORS

100 'BASIC DRIVER TO STORE 0S IN DISPLAY
150 CLS 32700 | 32

200 POKE 32700,32:'POKE 3E20H 1 62 3E20H
300 POKE 32701,62

400 POKE 32702,34:°POKE 3E22H 2 |34

500 POKE 32703,62 3E20H
600 POKE 32704 ,36:'POKE 3E24H 3 ]62

700 POKE 32705,62 4 36

800 POKE 32706,255:'POKE -1 a£24m
900 POKE 32707,255 5 62

1000 DEFUSR0=&HCO00

1100 B=32700: 'START OF POKED DATA 6 1255

1200 A=USRO(B):"MAKE CALL TO AL ROUTINE 7 255 FREFH
1300 GOTO 1300:'LOOP HERE TO RETAIN DISPLAY

Figure 4-13. Passing Multiple
Arguments 97



Passing The Arguments

A second method is to pass the arguments between BASIC
and assembly language by using a common memory area.
Arguments can be POKEd into the memory area in BASIC
or obtained from the area by PEEKs. The assembly-
language code, of course, can easily load or store the
values. You can define this common memory area as part
of the assembly-language program area itself or in a
convenient location outside of the assembly-language
program.

Another way to pass the arguments is to use the contents
of HL to define the address of a parameter list. Argu-
ments can then be picked up or stored in the list by the
assembly-language program. Of course, the address of the
parameter list can be passed back from the assembly-
language routine to BASIC. The parameter list may be
established in BASIC by using a dummy string or array.
You can then determine the address of the array or string
by a VARPTR function in BASIC and pass it to the
assembly-language routine.

In the next chapter we’ll look at a special case of inter-
facing assembly-language routines: embedded machine-
language code in BASIC programs.

98

s
o *,

i .,



Chapter 5
Embedded Machine Code in BASIC

In this chapter, we’ll discuss special techniques for
embedding assembly-language code in BASIC programs.
By this technique, short assembly-language routines can
be included as DATA statements or strings in the BASIC
program. One advantage to this is the ability to store,
load, and execute the BASIC and assembly-language code
as one file. Additionally, you don’t have to compute the
addresses of -the assembly-language routines manually
and include them in the BASIC code — they are
automatically found by the BASIC program itself.

The drawbacks to this method are: (1) it works best with
short code segments that are relocatable; (2) it requires
some conversion of the hexadecimal machine code values
into decimal values to include in the BASIC code.

Relocatable Code

Before we show several methods for embedding machine
code, let’s first talk about relocatability. As it applies to
embedding, “relocatability” does not have the same
meaning here as when we used the term with the Disk
Assembler and Loader. The Loader relocates code by
adding a relocation bias to addresses in instructions in
order to obtain the correct address for the instruction no
matter where in memory the instructions are moved. How-
ever, here we're talking about instructions whose machine
code form is constant no matter where in memory the
instruction is. These instructions would not have the
relocation bias added to them during the loading process.

99



As a rule of thumb, any instruction that does not contain a
memory address is relocatable. For example,

LD A:B
AND D7FH
LDIR

LD A (HL)

are all instruction types which have the same machine
code form no matter where in memory they’re located.

Instructions that contain addresses, however, may or may
not be relocatable. If the address reference is to somewhere
inside the program and if the program is moved around in
memory, the address in the instruction should be con-
stantly changing depending upon the area of memory in
which the program is loaded, as shown in Figure 5-1.

8000H

C313 82 l JP NEXT

8213H NEXT EQU $

Co00OH

c313C2 l JP NEXT

C213H NEXT EQU $

FIRST LOCATION
OF PROGRAM

NEXT = 8213H AND
“JP NEXT” IS C31382.

SECOND LOCATION
OF PROGRAM

NEXT =C213H AND
“JP NEXT" IS C313C2.

Figure 5-1. Non-Relocatable Direct Address
Instruction

If the address in the instruction refers to a memory
location that is not inside the program, such as a ROM
subroutine or a fixed buffer in high memory, then even

100




though the program may move, the instruction containing
the address is relocatable, as shown in Figure 5-2.

8000H
3A 00 EO |LD A,(EGOOH)| TRSTLocAToN
CODE FOR “'LD A, (EQQQOHY"
IS3AQ0 EQ
CO00H
3A 00 EO |LD A,(E00OH)| oF procham
CODE FOR ““LD A,(EGGOH)”
{S3AG0 EQ
EQOOH

Figure 5-2. Relocatable Direct
Address Instruction

Some examples of instructions that are not relocatable are
LD HLs TABLE (where TABLE is inside program)
LD A (FLAGS) (where FLAGS is in program)
JP O ZaNEXT (where NEXT is inside program)

Jump instructions that jump to locations inside a program
are always non-relocatable, unless they are “Jump Rela-
tive” instructions or DJNZ instructions. The reason for
this (check out the instruction formats in Appendix II) is
that the standard JP type instructions always have an
address in bytes 2 and 3 of the instruction. This address, of
course, should change as the program is moved around in
memory.

101



Hints and Kinks 5-1

JR and DJNZ Instructions
The format for the JR and DJNZ instructions is

BYTE @ BYTE |

DISPLACEMENT
the opcode 1s fixed:
JR=18H+ JR C=1CH:s JR NC=30H;:
JR Z=28H, JR NZ=20H, DJINZ=10H

The second byte is computed by counting
forward or back from the instruction following
the JR or DJNZ. Since the JR or DJNZ is two
bytes long, a jump to the following
instruction would have a displacement in the
second byte of 0; a jump to the JR or DINZ
itself would have a displacement of FEH or —~2!
If you're weak on hex math, count back one
byte at a time from the relative instruction
like this: FDH, FC, FB, FA, F9, etc. to get
the second byte. Best not to try this with an
instruction 102 bytes back!

The JR and DJNZ instructions, however, use a
displacement field of one byte in the instruction. This
displacement field is used to compute the jump address by
addition to the current contents of the program
counter. Therefore, the jump address (or effective
address) is always relative to the current location of the
instruction. If the jump is to an instruction 6 bytes
forward, the format of a JR NEXT is always 18 04; if the
jump is to an instruction 6 bytes back, the format of a
JR NEXT is always 18 F8. (Remember, the program
counter points to the next instruction after the JR by the
time it is added to the displacement, making the dis-
placement field a value two bytes less than the displace-
ment from the start of the JR!)

Because the JR and DJNZ are fixed values wherever the
program is relocated in memory, they’re relocatable
instructions you can use in place of JPs. Of course, the
jump address must be within 129 bytes forward or 126
bytes back of the JR or DIJNZ.

102

P

{

ReAen,



If you're using the Disk Assembler, it automatically flags
in the machine code section of the listing which instruc-
tions are relocatable and which instructions are non-relo-
catable. A byte that is relocatable is followed by a blank,
while a single quote is used after an address. If the
machine code for an instruction doesn’t have a quote, the
instruction is relocatable.

Hints and Kinks 5-2
Non—-Relocatable Instructions

The following instructions are not relocatable
unless they reference memory locations that
are fixed and outside the program area in
question:

Load A
from memory LD Aslnm)
Store A LD {nn) sA

Load register

pair

immediate LD ddsnn
dd=BC+DE+HL +SP+IX 1Y

Load register

pair memory LD ddsinmn?
dd=BCsDE +HL sSP»IX 1Y

Store register

pair LD (nwv) odd
dd=BC+DEsHL 5P »IX 1Y

Uncondi-

tional jump JP own

Conditionail

Jump JP oo
co=NZsZsNCHC+PO+PE P M

Uncondi-

tional CALL CALL nn

Conditional

CALL CALL comn

coc=NZ 12 +NCsCHPOPE P M

103



Embedded Machine Code
By DATA to Memory

The first method of embedding machine code is to include
the code in DATA statements and then move it to a fixed
location in memory. Let’s see how this works on a simple
program. Figure 5-3 shows the listing for a short program
to scroll up the screen one line.

8000 60100 ORG 8oooH
00110 ;SCROLL PROGRAM. SCROLLS UP SCREEN ONE LINE. FILLS
00120 ;LAST LINE WITH BLAKNKS

8000 21403C 00130 SCROLL LD HL,3CO0H+64 1START

8003 11003¢C 00140 LD DE,3C00H sDESTINATION

8006 01C003 00150 LD BC,1024-64 s # BYTES

8009 EDBO 00160 LDIR ;SCROLL

800B 21CO3F 00170 LD HL,3FCOH ;ADDRESS OF LAST LINE
800E 3E20 00180 LD Ayt iBLANK CHARACTER
8010 0640 00190 LD B,64 ;# BYTES PER LINE
8012 77 00200 LoOP LD (HL), A ;STORE BLANK

8013 23 00210 INC HL ;BUMP POINTER
8014 10FC 0g220 DJINZ LOOP iGO IF NOT 54
8016 €9 00230 RET s RETURN

0000 00240 END

00000 TOTAL ERRORS

Figure 5-3. SCROLL Program
Example

The program contains all relocatable code and is meant to
be called from BASIC by the techniques discussed in
Chapter 4. To embed the code in a BASIC program by that
method, take the following steps:

1. Assemble and debug the program completely.
2. Convert the hexadecimal values for the
machine code into their decimal equivalents.

3. Put these decimal equivalents into a DATA
statement in the BASIC program.

4. Move the DATA values to a predetermined area
of memory at the beginning of the BASIC program.
5. Set up the USR address and call the machine
code as required.

These steps have been carried out in Figure 5-4. The
resulting BASIC program is a simple test of the program;
two versions are shown, one for Level II and one for Disk
BASIC. (Set MEMORY SIZE to 32767.)

104




Hints and Kinks 5-3

BASIC Address Computation

In using machine code in higher memory with
BASIC—

Certain BASIC functions that operate only with
16-bit integer values don't permit ''absolute'
values from 32768 through 65535. An
‘‘overfilow" error results. When addressing
memory locations with these functions, the
interpreter must be fooled into thinking the
memory location value is a legitimate integer
value from —32768 to +32767.

This problem only occurs for memory locations
in the upper 32K of memory, 32768 through
65535. When you reference these locations.
they must be in the form of the expression —

LOCATION-B5536

This problem occurs for the FOR . . . TO
command, DEFUSR command, PEEK command, POKE
command, and others.

Example:
100 PRINT PEERK(BOOOO:} does not work,
but
100 PRINT PEERK{BOOQOO-65536) does.

100 REYN EMBEDDED HACHINE CODE BY DATA TCO MEMORY
200 FOR I=32768 TC 32790

300 READ A

400° POKE (I-65536),4
500 NEXT I

600 DEFUSROz&HB0QQ: 'POKE 16526,0: 'FOR LEVEL II
700 "ECKE 16527,128:'FOR LEVEL IT

800 X=USRO(Q):'X=USR{01: FOR LEVEL I1I

900 GOTO 800

1000 REM TEESE DATA VALUES ARE THE 23 BYTES OF SCROLL IK DECINAL
1100 DATA 33,64,60,17,0,60,1,192,3,237,176,33,192,63,62,32,6,64
1200 DATA 116,35,16,252,201

— — DISK BASIC

—— LEVEL U BASIC

Figure 5-4. DATA-to-Memory
Embedded Machine Code

105




In this case, relocatable code was used in the SCROLL
program. However, since the predetermined area of 8000H
was used, the code could have included non-relocatable
instructions, as long as the assembly was performed with
an ORG of 8000H.

This method can be used for any size of assembly-language
program. It does get quite tedious, however, to convert the
hexadecimal values into decimal for large amounts of code.
A few other disadvantages include the necessity of fixing
the memory area for the assembly-language code and the
possibility of having to “merge” the DATA table with other
DATA values in the BASIC program.

Embedded Machine Code
By CHR$ Strings

This method of embedding machine-language code into a
BASIC program uses the CHR$ function of Level II or Disk
BASIC to construct a string of machine-language values.
You can then find the location of the string by the VARPTR
function and make a call by the USR function.

You must carry out the same preliminary steps as in the
first method: the program must be assembled, debugged,
and converted to decimal values. The decimal values must
then be used in a BASIC character string such as ZZ$=CHR$
(xx)+CHR$(xx)+CHR$(xx)+ . . . where “xx” represents the
machine code decimal values.

A BASIC program that calls SCROLL and uses this method
is shown in Figure 5-5. The VARPTR function is used to
find the location of string zz$. Remember from the Level 11
manual that VARPTR points to a parameter block for the
string. The parameter block has the form shown in Figure
5-6. The second and third bytes represent the actual
location of the string.

106

g

g




50 REM CHR$ EMBEDDED MACHINE CODE

100 A4=CHR$(33)+CHRS(6H)I+CHRE(60)+CHRS$(17)1+CHRS$(0)I+CHRS$(60)
+CHRS(1)+CHR$(192)+CHR$(3)+CHRS$(237)+CHRSE(176)+CHRS(33)
+CHR$(192)+CHR$(63)+CHRS(62)+CHRS(32)+CHRS(6 ) +CURS(6HI+CHRS(119)
+CHR$(351+CHRS(16)+CHRS$(252)+CHRE( 201}

200 B=VARPTR(AS)

300 C=PCEK(B+2)*256+PEEK(B+1):"POKE 16526, PEEK(B+1):'FOR LEVEL Il

- —~ DISK BASIC

s LEVEL 11 BASIC

Figure 5-5. CHR$ Embedded
Machine Code

8=VARPTR (AS)

8IS SET EQUAL TO
ADDRESS OF STRING
“PARAMETER BLOCK"”

LENGTH OF STRING B
MS BYTE OF STRING ADD | B+1
LS BYTE OF STRING ADD | B+2

Figure 5-6. String Parameter
Block

Because the string is located in the string storage area
high in memory, there is a major problem with this
method! Both Level II and Disk BASIC go through a
“garbage collection” process when they run out of string
space. As you recall, a string storage area may be CLEARed
initially in the BASIC program.

As operations are performed on strings in the BASIC
program, the interpreter uses more and more of the string
storage area. The interpreter is sloppy and does not clean
up old forms of the strings as new string storage space is

107



allocated. However, after many string operations, the
interpreter may run out of string storage space and have
to go back to “clean up” the string storage area. When this
is done, the memory for the strings are reallocated and the
string addresses change.

This garbage collection may never happen in the BASIC
program you interface to the assembly-language code. It is
a function of memory size, string storage area, and string
operations. However, because it can, it is always best to
find the address of the CHR$ string immediately before
the machine code in the string is called.

This method works quite well for short assembly-language
programs, but one of the limitations is in the length of the
BASIC line defining the string. To avoid the problem,
several strings may be concatenated to produce a larger
string, however, a more stringent limitation is the size of the
string itself, which cannot be greater than 255 characters.
You must use all relocatable code in this method.

DATA Values and Dummy Strings

A third way to embed assembly-language code in BASIC
programs is to use a table of DATA values representing
machine code as in the first method but to move those
values to a “dummy” string. The advantage of this method
over the first is that the BASIC program will perform the
address calculation automatically by the VARPTR function.
The disadvantages are the string size limitation and the
requirement of all relocatable code.

The “dummy string” here is a BASIC string statement of
the form Zz$="THIS I8 A DUMMY STRING. . . ." The
number of bytes in the string should be equal to or greater
than the number of bytes in the assembly-language pro-
gram. The text is irrelevant. The location of the string is
found by VARPTR, and the bytes from the DATA table
replace the characters of the dummy string.

In this case, reshuffling strings is no problem during the

108

IS
s

PP
¥
- r




garbage collection process since the string location is in
the BASIC statement itself and the interpreter records the
‘address of the text as the string address. Figure 5-7
illustrates use of this method with the SCROLL program.

Hints and Kinks 54
Using Dummy Strings

There is a slight problem in using a dummy
string as a storage area for machine code.
BASIC uses a zero (null) byte to mark the end
of a text line. If a zero is stored for a byte
of an instruction, the BASIC interpreter will
truncate the line during edits, lists, and
other operations.

You can store zeroes and use the embedded
machine language normally. However, don't
attempt to edit such a program after
execution. Edit the BASIC program before it's
run and save it on cassette or disk before
execution.

If a program is listed after execution,
strange things will occur as the interpreter
encounters the modified dummy string. Valid
machine codes may not be valid display
characters!

100 REM DATA TO DUMNY STRING EMBEDDED MACHINE CODE
200 A$="THIS IS A DUMMY STRING!

300 B=VARPTR{#$)

400 CzPEEK(B+2)%256+PEEK(B+1)

500 FOR 1=C TO C+22

600 READ A

700 IF I>32767 TEEM POKE I-65536.A ELSE POKE 1.4
800 NEXT I

900 IF C»32767 THER DEF _s_g;g_s_ssjs_ ELSE DEFUSRQ=C
1000 TPOKE 16526 ,PEEK(B+1):'FOR LEVEL II

1100 'POKE 16527 ,PEEK(B+2):'FOR LEVEL 11

1200 X=USRO(0):'X=USR(0):'FOR LEVEL II

1300 GOTC 1200
1400 DATA 33,64 ,60,17.0.60,1,192,3,237,176,33,192,63,62,32,6.,64
1500 DATA 119,35,16,252,201

.. DISK BASIC

LEVEL H BASIC

Figure 5-7. DATA to Dummy String
Embedded Machine Code

109



DATA Values and Array Storage

By taking advantage of the contiguous nature of arrays,
you’ll have a fourth method of storing machine code within
the BASIC program. Arrays in BASIC are allocated by DIM
statements. Once you've established the array, the array is
treated as a block of data. Any number of bytes can be
used in the array. The array location remains fixed as long
as new variables are not referenced; its location can
always be found by VARPTR.

Hints and Kinks 5-5
Array Storage of Machine Code

If an integer array (such as A%) is used for
storage of machine code data. remember that
the elements of the array are two bytes long
and that the data is stored in normal array
operations in standard Z-80 address format.
Storing O through 4 in array A%(0)—-A%(4), for
example, produces

LOC+0

+|

} AZ(D) =0

AZ(l) =

i

A% (2)

|
| rzo
|

1
N

i
&V

+8
+9
Take this into account when storing machine

code data by setting an array element to two
machine code bytes —

4

"

O L!‘)

G
SIESICHESHNISIERISHS

A%Z{4)=(machine code byte n)*256+ (machine
code byte n+1)

110




In this method, the DATA values representing the
machine code are moved to a dummy array, the VARPTR
function is used to find the address of the array, and the
DATA values are moved initially to the array. To make
storage into the array more straightforward, the array
should preferably be an array of integer values, since they
occupy two bytes per element. The elements of an array
are contiguous, that is, they occupy successive locations
in memory, and the DATA values can be stored with no
problem. Figure 5-8 shows this method.

100 REM DATA TO ARRAY EMBEDDED MACHINE CODE

200 DIM AZ(12)

300 B=VARPTR(A%(01)

400 FOR I=0 TO 11 -
500 READ C,D

550 E=D*256+C

600 IF E>32767 TEEN A%(I)=E-65536 ELSE A%(I):=E

700 HEXT I

800 IF_ B>32761.3§ﬁ§ DEFUSRQ=B-65536 ELSE DEFUSRO=B
900 *POKE 16526 ,B-INT(B/256 ) %356 'FOR LLVEL 11
1000 TPORE 18557, INT(n/ZSG) "FOR LEVEL 11

DISK BASIC

o LEVEL Ji BASIC

1100 31ZUSRE(0) 3 TA=USR{0) : TFOR LEVEL I1
1200 GOTH 7106
1300 DATA 33,64,60,17,0,60,1,192,3,237,176,33,192,63,62,32,6,64

1400 DATA 119,35.16.252.201,@

NOTE DUMMY LAST VALUE FOR EVEN #

Figure 5-8. DATA to Array
Embedded Machine Code

Passing Arguments and
Multiple Subroutines

In the above examples, we illustrated the techniques
with a very simple subroutine. However, you can incor-
porate all of the material presented in Chapter 4, into
these embedded machine-language methods including
passing multiple arguments and multiple subroutines
back and forth.

Using embedded machine-language code can be a valu-
able tool since it blends the easy-to-use string handling,
display and print formatting, and number-crunching
abilities of BASIC with the high-speed of assembly lan-
guage. It’s probably well worth your effort to take portions
of BASIC programs that are notoriously slow and rewrite
them into short embedded assembly-language routines —
code such as sorts, searchs, and graphics. Watch for
further examples of embedded machine-language code in
later chapters.

111






SECTION II
Assembly-Language Techniques

Chapter Six

Number Crunching

This chapter looks at what is commonly called “number
crunching.” This term refers to operations on data that is
primarily numeric — adds, subtracts, multiplies, divides,
trigonometric functions, integration, differentiation, and
so forth. We only have room here to discuss basic number-
crunching operations that come up frequently in non-math
oriented programs — such things as adds, subtracts,
multiplies, divides, and random number generation.

Addition and Subtraction

Addition and subtraction operations are built into the
instruction set of the Z-80. All other math-related opera-
tions have to be built out of adds, subtracts, compares, and
shifts.

Eight-Bit Adds

The basic adds and subtracts use two 8-bit operands. One
of the operands is in the A register, while the other
operand is either in the instruction itself (immediate
addressing), in another CPU register (register addressing),
in a memory location pointed to by the HL register
(register indirect addressing), or in a memory register
pointed to by the effective address of an indexed-type
instruction.

113



Suppose we have 23H in the A register, 45H in the B
register, 8000H in the HL register pair, 8040H in IX, 7FFOH

in 1Y, and 45H in memory location 8000H. All of these adds
accomplish the same thing, adding a 45H to the 23H in the
A register, putting the result of 68H in the A register and
setting the flags.

1. ADD A45H Immediate add of 45H to 23H in A
2. ADD AB Add of 45H in B to 23H in A
3. ADD A 3L Add of 45H in 8000H to 23H in A

4. ADD A,dX-40H) Add of 45H in 8000H to 23H in A
5. ADD Aay+16) Add of 45H in 8000H to 23H in A

Generally, in arithmetic instructions, all flags are
affected. But how are the flags set? The C flag is set when
there is a carry from bit 7 of the result, which does not
occur here. The Z flag is set when the result is zero, which
is not the case for the result of 68H. The P/v flag is the
dual-purpose flag used either for parity or overflow. In
arithmetic instructions, P/v is always used for overflow.
There is no overflow here, and P/V is not set. The sign flag
is set when the result has a one bit in bit 7, indicating that
the result is negative (not the case here). The N flag is not
set here since this is an add, and the half-carry flag is not
set here because there is no carry from bit 3 of the result.
(N and H are hardly ever used by the programmer, and
there are no conditional branches on them — so ignore
them!)

114

3l

P




Hints and Kinks 6-1
P/V Flag

When we talk about parity in the TRS-80, we're
not discussing farm prices. Parity refers to a
count of the number of one bits in (usually)
an 8-bit location or register. Parity is
primarily used to check the data on I/0
operations. Since I/0 devices lose data more
frequently than cpu/memory actions, a check on
the number of one bits is a rough check on the
validity of the data.

In the Z-80, the P/V flag is set for even
parity. If the number of one bits is even

after an instruction affecting parity, then
the P/V flag is set: otherwise it is reset.
Instructions that set parity in this fashion
are IN R,(C), most shifts and rotates, and the
logical instructions.

The P/V flag is used for overflow when (most)
arithmetic instructions are execuied. It can
be tested by a conditional jump to ascertain
whether or not the result was too large to be
held as a two's complement number, either for
8-bit or {some) 16-bit instructions. Overflow
occurs for 8 bits when a result is below —-128
or above 127 and for 16 bits when a result is
below -32768 or above 32767.

Many times an add will be used without any other follow-
ing action. Sometimes, however, an add will be followed by
a conditional branch of some type, as in the example from
the MEMORY Subroutine from Chapter 14 shown in Figure
6-1. An ADD A,(HL) is done to add the contents of the
memory location pointed to by HL to the contents of the A
register. If the result is zero, a conditional jump is made to
MEMO008 to set the count to zero (!); if the result is positive
(P), a JP is made to MEMO010.

115



00137 F1 60320 POP AF

001y F5 00330 PUSH AF

0015 " 86 00340 ADD a, (HL) ;ADJUST COUNT
0016 Ca 001C? 00350 JP Z,MEMOOS ;GO IF ZERO

0019 F2 001D 00360 JP P, MEHO10 ;G0 IF POSITIVE
001C* AF 00370 MEMOOB: XOR A s COUNT OF 0

001D’ FE 64 00380 MEM010: CP 100 ;TEST FOR LT 100
001F* FA 0024 00390 JP M, HEHM020 ;G0 IF LT 100
oo2z* 3E 63 00400 LD A,99 {MAX COUNT

002y ! 77 00410 MEN020: LD (HLJ, A 1STORE COUNT

Figure 6-1. Arithmetic Followed
by Conditional Branch

Many times programmers get confused about using condi-
tional branches on flags. Much of the confusion is about
when the flags get set and reset. Unless an instruction
description specifically says that the flags are
affected by the instruction, the flags remain as they
are! This means that you can use flags from several
instructions back for conditional branching as long as you
haven’t used instructions that affect the flags in question.
Many times, however, you will use a conditional JP as the
next instruction after the arithmetic instruction.

Eight-Bit Subtracts and Compares

Eight-bit subtract instructions operate in the same
addressing modes as the ADD instruction. The flags are set
in almost identical fashion, with a few exceptions. The SUB
sets the C flag if there is no borrow. This means, in fact,
that the C flag is reset if there’s a carry out of bit 7 — just
the reverse of the ADD!

116

.
5




‘Hints and Kinks 6-2

Carries

When is a carry set, and when is it reset on an
add, subtract, or compare? Here's how you can
find out manually: If an add is being
performed, add the two operands in binary: any
carry bit out of the high order will simply
set the carry.

On a subtract or compare, converti the itwo
operands to binary. Now take the iwo's
complement of the subtrahend (the one to be
subtracted). Now add the operands. Complement
the state of the carry. The result will be the
state of the carry after a subtract or
compare. After running through several
thousand test cases, we discovered that the
carry was set on a subtract or compare if a
larger unsigned number was subtracted froma
smaller unsigned number. What about signed
numbers? This will be left as an exercise for
those readers who are not faint of heart

ogoopE T 3
P0o0p018 -(+2)
¢y Miirinig 2:scomp
l‘”’¢ﬂ¢¢ﬂ¢¢‘ +1 RESULT
g
20038818 2 Frriieig 254
gopegoIt -(+3) PELLELTY ~(+255)
oy ibliiigl 2's come oy 929@8PP1  2'S COMP
@<— 1LV ~1 RESULT ?«uinn\ ~1 RESULT
v
I

l

117




You would think that adding -5 to 10 in A would be the
same as subtracting 5 from 10 in A. However, it isn’t, as
the C is set for the ADD and reset for the SUB. (Also, the N
and H flag logic is different for the ADD and SUB.) The
result in A is still the same.

LD Al
ADD A»-3
JP C,o0uUT
LD Al
SUB A5
4P C,ouT

110 TO A
310 PLUBS -3 16 A
iTHIS JUMP IS MADE

i10 76 A
510 MINUS 2 70 A
sTHIS JUMP IS NOT MADE

Compares operate in identical fashion to subtracts, except
that the result is thrown away and is only used to set or
reset the flags. Figure 6-2 shows use of the SUB and CP
from the DECBIN subroutine of Chapter 13.

JUMP iF A NOW

HOLDS MINUS NUMBER

(IF A WAS LESS
30H)
85A3 TE 09160
8544 D630 09170
8546 FAB6B5 09180
8549 FEOA 09190
854B F2B685 09200
B5AE 5F 09210
85AF 1600 09220
8581 DD19 69230
8583 23 09240
85B4 10E2 09250

85B6 78 09260 DECO70

THAN

JUMP iF (A}=>10

LD A, (HL) ;GET CHARACTER
SUB 308 : CONVERT
|l M, DECO70 ] ;60 IF LT non
C 0 iTEST FOR GT "gn
(I P, DECO70 ] 160 IF GT m9"
[ E A iNOW IN E
LD D.0 ;NOW IN DE
ADD IX,DE iMERGE
NG HL
DINZ DECOL 0 {60 IF MORE
LD A.B {COUNT TO A

Figure 6-2. Use of SUB and CP

118




Sixteen-Bit Adds and Subtracts

Sixteen bit adds and subtracts can use either HL, IX, or 1Y
as 16-bit accumulators similar to the A register. How-
ever, the number of addressing modes that can be used for
register pairs is limited to one, the one associated with
adding another register pair to HL, IX, or 1Y. Also, while
you can do an ADD or ADC to HL, IX, or IY, you aren’t allowed a
SUB or SBC for IX or IY.

Another difference in the 16-bit arithmetic instructions is
that the flags may or may not be affected, according to
the instruction. ADD HL,BC, for example, does not affect Z,
P/v, or S, while ADC HL.BC does affect these flags. To see
which flags are affected keep one eye on Appendix Il while
using these instructions with conditional JPs.

Figure 6-3 shows you a trick to use with the C flag. The
ADD HL,DE does not affect the z flag, but does affect the C
flag. In this subroutine, the programmer did a decrement
on the contents of HL by loading DE with -1 and performing
the ADD HL,DE. The C flag will be set as long as HL is
positive or zero, but will be reset when HL reaches -1.

119



SYILSIDIY 3IYOLSIY!

d007T ¥AILNO INIHIYIAQ!
kY130 ¥0d d0o071!
INNOD d007T YINNT!
wON dfuw MO4d LSOPQV!
LNANIEO3Q ¥od -}

SYILSIDIY IAAVS!

SANO0J3ISITTIIN NI INDCD AYT13Q=(1H)
‘SANOOYSITTIM 9€4669 01 L SAvTad
anNILaoHEns AVIAQ
CERB R RGN B RN R RN RO R AU AR I R R AR N AN N NN B NN REERA R
RYIN3
47LIL

XX“1H aav
10} Bey4 9 ayy Buisn -9 ainbig

anN3
L3y
d0d
d40d
d0d
ar
aav
ZNra
an
334
a1
HShd
HSAd
Bsnd

FOBN SRR BB AR NN AR N ARG R AR N BN RO RO E RN RN RTINS GRRENN
Q3AYS SHIISIODIY Ty

PAHLNE

0EE00
0z2E00
0LE00
00€00
06200
08200
0L200
09200
06200
0feoo0
0Ezo0
02200
01200
00200
06100
08100
0LL00
09100
06100
oRL00
0EL00
0100
01100
00100

12100
+ 1100
10100
+d000
13000
18000
+ 6000
+ L00O
+ 9000
+£000
12000
11000
10000

instructions that add or subtract the carry (or borrow).
120

ADC A,23H, for example, adds not only 23H to the contents
of A, but also the current state of the carry. SBC HL.BC

Both the 8-bit and 16-bit adds and subtracts have
subtracts not only BC from HL, but also subtracts the
carry.



These instructions are used primarily for multiple-pre-
cision operations involving more than 8 or 16 bits of data.
The carry or borrow must be propagated from the lower
order to the higher order byte or “word.”

Hints and Kinks 6-3
Multiple—Precision Operations

How far can multiple—precision operations be
carried out? It's entirely possible to
implement arithmetic that works with 100 bytes
of precision. The question is, is it
necessary? To get a rough idea of the number
of decimal digits that can be contained in any
size binary number, take the number of bits
and divide by 3.5 — 8 bits would be 2.3, 16
bits would be 4.5, 32 bits would be 9.1, and
so forth (4.5, for example, would be somewhere
between four and five decimal digits). You can
see it doesn't take too many bits before we
can express ten or twenty decimal digits of
precision.

Aside from mathematical games or precise
scientific applications, there's generally no
need for large multiple—precision numbers. The
compromise reached in all computers is to hold
fioating—-point numbers with a dozen or so
decimal digits precision and an exponent that
represents a power of 16. This format would
still call for multiple-—precision operations
on the '‘fractional'' part, but 1t would be
limited to operations involving approximately
3 to 6 bytes.

Even with a small number of bytes,
multiple-precision multiplies and divides are
tedious and slow. Rather than writing a
bit-by-bit divide to work with 64 bits, many
programmers would implement something like
this: A four—-byte number can be expressed as
AB%162 + CD, where A, B, C, and D are the byte
values. To multiply two such numbers in
four-byte precision would involve the
expansion -

121



ABCD#EFGH = AB*EF + CD#EF + AB*GH +
CD*GH

This would require four 16-bit multiplies,
considerable multiple—precision shifting, and
four multiple-precision adds! This is a lot of
work for assembly~language programmers, who are
notorious for looking for the easy way out!

Figure 6-4 shows a use of this in the SUB subroutine from
Chapter 13. SUB subtracts the contents of a four-byte
variable SEED through SEED+3 from the contents of DE HL.
DE HL are treated as a four-byte variable. Note that ini-
tially the carry is cleared by an OR A instruction. One of
the peculiarities of the Z-80 is that it has a SCF to set the
carry, and a CCF to complement the carry, but no Reset
Carry; the OR A does reset the C flag, however, and the
contents of A remain unchanged. The next SBC is not
preceded by an OR A to reset the carry, and the carry from
the first SBC is subtracted from the result.

08600 ;e84 EBUREEBEBBESYBTRACT SEED SUBROUTINE#E#GRaSysnassvdy

08610 ;* SUBTRACTS FOUR BYTES OF SEED FROM (DE,HL). &
08620 ;% ENTRY: (SEED - SEED+3)=SEED # ®
08630 ;% (DE,HL)}=FOUR-BYTE VALUE ®
08640 ;% EXIT: (DE,HL)=RESULT OF SUBTRACT e
08650 ;&  ALL REGISTERS SAVED EXCEPT DE,HL #
08660 ;

8571 C5 08670 SUB PUSH BC {SAVE REGISTERS

8572 ED4BE385 08680 LD BC, (SEED+2) {GET LS BYTE

8576 BT 08690 [OR A | iRESET CARRY

8577 ED42 08700 4 SBC HL,BC :SUBTRACT LS 2 BYTES

8579 EB 08710 EX DE,HL ;GET MS 2 BYTES

8574 ED4BE185 08720 LD BC, ( SEED) {GET MS 2 BYTES

857E ED42 08730 {SUBTRACT MS 2 BYTES AND CY

8580 EB 08740 A EX DE, AL :NOW ORIGINAL-SEED

8581 C1 08750 POP BC :RESTORE REGISTERS

§582 C9 08760 RET {RETURN

CARRY

RESETS CARRY CONTAINS RESULTS
FOR FIRST OF FIRST SUBTRACT

SUBTRACT

Figure 6-4. Four-Byte Subtract
Example

122




Multiplies and Divides

All multiplies and divides on the Z-80 must be performed
in software. There are a number of methods for per-
forming software multiply and divides, ranging from suc-
cessive addition and subtraction to high-speed table
lookups. We'll discuss some of the more common ways
here.

Software Multiplies

Successive Addition

The simpliest multiply is by successive addition, as
shown in Figure 6-5 from Chapter 13. Here, the DE
register contains the multiplicand and is added to HL
(after HL is cleared) a number of times corresponding to
the multiplier. Three adds are used to multiply by three.

81C9 ED53E585 02560 LD (DOTO),DE ySTORE DOT ON TIHME
81CD 210000 02570 LD HL.0O

8100 19 02580 ADD HL.DE ;FIND 3%DOTO

81D1 19 02590 ADD HL,DE

81b2 19 02600 ADD HL,DE

81D3 22E785 02610 LD {DASHO} (HL ;STORE DASH ON TIME

Figure 6-5. Mulitiply by
Successive Addition

A variation on this approach uses the multiplier in the B
register to take advantage of the DJNZ instruction.

MULT LD Bs10 iMULTIPLIER =10
LD DE+34 SARBRITRARY MULTIPLICAND
LD HL +0 sCLEAR RESULT

LOO0P ADD HLsDE SSUCCESSIVE ADD
CJUNZ LOaP 3GO IF NOT N TIMES

123



Shift and Add Multiply

Another type of multiply is the “shift and add.” This
method, as the name implies, is a combination of shifts
and adds. You can factor any multiplier into a number of
powers of two factors. You can multiply N by 20, for
example, by adding 16«N + 4«N. Sixteen and 4 are powers
of 2 that you can easily obtain by shifting.

This type of multiply works best for commonly used
multipliers, like 10. The code in Figure 6-6 below,
excerpted from the Decimal to Binary Conversion
subroutine of Chapter 13, shows how you can use this
method. The number is shifted by an ADD IX,IX, which
shifts the number one bit position left. Four shifts result in
N+8. The previously saved N=2 shift is then “popped” into
DE and added in to give N=10.

TIMES 2 SAVED IN STACK

8598 Db29 06100 DECO4O ADD IX,IX ;INTERMEDIATE®2
8594 DDES 09110

859C DD29 09120 ADD I1X,IX 3 84

859E DD29 09130 ADD IX,IX ;%8

85A0 D1 09140 POP DE 182

8541 DD19 09150 d ADD IX,DE s ®10

i

TIMES 2 RETRIEVED
FROM STACK

Figure 6-6. Shift and Add
Example

In the multiplies above, you’ll have speed limitations in
the successive addition case (for large multipliers, the
process takes a very long time) and lack of generality in
the shift and add case. For programs that perform many
multiplies of different sizes of numbers, it’s best to
implement a bit-by-bit multiplication.

Bit-By-Bit Multiply

A bit-by-bit multiply, implemented as a subroutine, is
presented in Figure 6-7. The multiplier is held in DE on
entry and the multiplicand is in BC. On exit, the result is

124




held in DE, HL, treated as a four-byte register. If the
product of the multiply is less than 65536, then it is in HL
alone with zero in DE.

8000

8000
8003
8005
8006
8007
8008
8009
8ooa
8oocC
800D
800E
8010
8011
8013
8013
8015
8017
0000

210000
3E10
EB

29

FS

00050
00100
g0110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

00220 3

00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00342
00344
00350
00360
00370
00380

00000 TOTAL ERHORS

8000H

AR AR R AR EEANEERESIARAENANIERERRNERRRTRIRR NN AR AR RGN NN
H SWEET 16 MULTIPLY

;¥ ENTRY: (DE)=MULTIPLIER, 16 BITS UNSIGNED
(BC)=MULTIPLICAND, 16 BITS UNSIGNED

;'

SWE16

SWEO10

SWEQ20

SWEO30

(DE,HL)=PRODUCT,

{BC}=RETAINED
(A)=DEVASTATED
EVERYTHING ELSE IN REASONABLE ORDER

*
*
*
* HISTORICAL NOTES:
*
L]
*

LD
LD
EX
ADD
PUSH
EX
ADD
JR
INC
POP
JR
ADD
JR
INC
DEC
JR
RET
END

HL,0

A, 16

DE, HL

HL  HL

AF

DE,HL

HL  HL
NC,SWEO20
DE

AF

NC, SHEO30
HL,BC
NC,SWE030
DE

A
NZ,SWE010

32 BITS UNSIGNED

THIS MULTIPLY WAS WRITTEN WHILE
PULLING TOGETHER THE FINAL PIECES OF THIS BOOK

IN ABOUT 23577 MILLISECONDS.(NO, NOT THE 18T TIME).
ERE R RSN SR E TR AR RS AR R IR RN NN SN B O R R RN RE RN IRRNRB NN

1ZERO PRODUCT HALF
;ITERATION COUNT

$SETUP FOR SHIFT
;SHIFT DE

$SAVE POSSIBLE CARRY
;PUT DE BACK

sNOW BOTTOM HALF

;GO IF NO CARRY

; PROPOGATE

{GET € FROM DE

;GO IF NONE

sBIT WAS A ONE

;G0 IF NO CARRY TO MSB
: PROPOGATE
:DECREMENT COUNT

;GO IF MORE

$+BACK TO CALLING PROG

Figure 6-7. Bit-by-Bit Multiply

Code

The subroutine works by shifting DE, HL. The bit shifted
out of DE is used to determine whether you should perform
an add of BC to HL. HL holds the partial product. Sixteen
shifts are performed, and each one causes either an add or
no action dependent upon whether the carry is a one or
zero. The action of the multiply is shown in Figure 6-8.

125

1]
#*
*
*
*
*
E]
@
*
2
-



Hints and Kinks 6-4
Fast Multiplies

It seems that computers are constantly being
pushed by the applications! By that I mean
that there's a constant requirement for faster
and more efficient computers to handle
applications that haven'l been computerized
and could be, or to speed up existing
applications.

One of the critical areas of application
involves multiplies as they are used in all
kinds of number crunching. Since we don't have
a hardware multiply on the TRS-80, we have to
make do with a software routine.

You can speed up multiplies considerably by
making them ''in-line'' code. This method
eliminates the usual 8- or 16-iteration loop
by substituting 8 or 16 code segments.
Multiplies of 150 microseconds for 8 bits are
possible with this approach. a factor of two
better than some iterative multiplies.

Other high-speed multiplies involve
constructing large tables of partial results
for various multiplier/multiplicand
combinations.

CY BIT SET IF
MULTIPLIER BIT =1
RESET IF MULTIPLIER BIT=0

SHIFT DEHL
LEFT ON EACH

E 2\ H ; . OF 16 ITERATIONS

Y D
;4———{ MULTIPLIER (INITIALLY) PARTIAL PRODUCT l/
L L]
s T
l MULT!PLICAND ]

ADD MULTIPLICAND TO
PARTIAL PRODUCT IF
MULTIPLIER BIT IN CY
iS 1, OTHERWISE DO
NOT ADD FOR THE
ITERATION

Figure 6-8. Bit-by-Bit Multiply
126 Action




Software Divides
Successive Subtract Method

Software divides are handled in similar fashion to
multiplies. Figure 6-9 shows a successive subtract method
from the code of Chapter 13. It divides a 16-bit dividend in
HL by a 16-bit divisor in BC. Each time the divisor is
successfully subtracted from the dividend without
producing a negative result (no carry), a count in DE is
incremented by one. The count was initially set to -1. At
the end of the divide, DE holds the count, which is the
quotient. You could find the remainder by adding BC back
to the residue in HL, although this is not done in the code.

81B4
81BD
81BE
81Co
81¢C3
81Ch
81C6
81C7
81c9

HL DE
] 1
. }
[ DIVIDEND ] | QUOTIENT
1 T
SBC, HL, BC {
N
L DIVISOR l INCREMENTED BY
t 1 FOR EACH SUC-
3C CESSFUL SUBTRACT
21C003 02480 LD HL, SPEEDF :1200/WPM=DOTO TIME
4F 02490 LD C,A {WPM LS BYTE
0600 02500 Lb B,0 (HOW IN BC
11FFFF 02510 LD DE,-1 {QUOTIENT
B7 02520 SPEO15 OR A {ZERO €
EDA 2 02530 SBC HL,BC ;DIVIDE BY SUCCESSIVE SUB
13 02540 INC DE :BUMP QUOTIENT
30FA 02550 JR NC, SPE015 ;GO IF NOT NEGATIVE
EDS53E585 02560 LD (pOTO},DE {STORE DOT ON TIME

Figure 6-9. Divide by Successive

Subtraction

Bit-By-Bit Restoring Method

Another type of divide is implemented in the code from
Chapter 14 shown in Figure 6-10. This is a bit-by-bit
“restoring” divide, which divides the 16-bit dividend in HL
by an 8-bit divisor in E. On exit, HL holds the quotient and
BC holds a remainder. The action of the divide is shown in
Figure 6-11.

127



nunLAyY
SYILSIDIH F¥0oLsSaY!
LNdTrondt

yAANIVUIE !
SHOTIVYYELTI 91 10N 4I 0D}
116 b 13sdy!
Jy0ls3Y!
LN3IM dAIAIQ 4T 09!
LOVHIENS xui!
AE¥VD ¥YETO!
Lig b 13s!
S1Id SW 9l 0l X¥uvo!
AHHYO ON 3T 09!
s1Id §71 9t L4THS!
S1Ig SH 9L L4IHS!
LNOOD NOILYHEIT!
30 NI ¥OSIAIQ!
TH oAzt

XI 0l aNIAIAIQ!

SYFLSTHIY IAVS!?

apmni@ ug-Aq-ug '01-9 ainbiy

ag
XI

‘1K

X1

ag

TH

oL0AId

X1

44’ H
0EOATIQ ON
3a0° 4

v

XI

TH

020ATIA ‘0N
XI1*'XI
TH ¢ TH

91 ‘g

0'd

0‘1H

XI

H

X1

3d

aunihoy

andg
L3y
d04d
404
d40d
HSAd
d40d
HSNd
nra
sda
aav
ar
24s
40
ONT
ONI
yr
aav
aay
aT
a1
an
d0d
HENd
HENd
HSd

0EOAIA

020ATd

0L0ATd

t3AIAICQ

REANEFRGAGAGERBRBRRUNNADRDURRURRRDAENDRRANBRDHUBUDNTGR

#
#
"
#
*
#*
&
#
]

08 °1H Ld30Xd QIAVS SYFISIOAY TV

LIg-8 Xd SiI€ 9L J0 IATATQ GINOISNN NY SH¥0JHAd
INILNOYENS FATAIQ
FHANRBAGURN IR H AR AR R ER NG RGARRDO R NBR N RO RBRRDRONESE

@&
MAQNIYHAY=(0°) @
INZILOND=("1H) t1IXd »
YOSTIAIA=(d) B
ANFAIAIQ=(TH) RHINT  a
*HOSTAIQ .
#*
#
#
4qIAI0 RUING
YSIAIQ 31111

08400
0Lh00
09400
05100
onhoo
0E 00
02100
0iroo
00r00
06E00
08E00
0LEOOD
09€£00
0s€oo
oxeoo
0€€00
02€00
oLE00
00€00
06200
08200
0L200
09200
05200
oheoo
0€200
ozeoo
01200
00200
06100
08100
0L100
09100
05100
oftoo
0£100
02100
oito0
00100

S3
a4
g2

€0
4

14

10
62

04
00
0000
1g

o

200
1 9280
+ hE00
1 E200
11200
+ 0200
+3L00
1@L00
18100
s YL00
13100
19100
16100
€100
12100
10100
13000
13000
19000
16000
1 9000
+ 1000
1E000
11000
10000

128




QUOTIENT BIT
Q@ IF SBCHL.DE
CY BIT SET IF RESULT - RESULT WAS —,

RESET IF RESULT + 1{F SBC HL,DE
/ RESULT WAS +
|
H L 1% !
cy \ £\ ; v
D.,__( ZEROES (NITIALLY) | DIVISOR UNITIALLY) |
4 i SHIFT HL,IX
—n. LEFT ON EACH
{TERATION

|08 oo 2o zfés DIVIDEND |
D E

SUBTRACT DE
FROM HL ON
EACH ITERATION
ADD BACK IF
RESULT NEGATIVE

Figure 6-11. Bit-by-Bit Divide
Action

Signed Vs. Unsigned Multiplies and
Divides

All of the multiplies and divides we've discussed above
were unsigned. That is, all operands were considered to
be positive numbers with no sign bits. This means that the
range of numbers held in a 16-bit result would be 0
through 65535, rather than -32768 through +32767.

You may wonder if a signed multiply or divide is possible.
Yes, but the rules for a signed operation are somewhat
sticky. It is best to find the absolute value of the
operands, perform the unsigned multiply and divide, and
then convert the result to the proper sign.

Overflow Limits

Another problem that we haven’t discussed in the above
code is overflow. Overflow may occur when the register(s)
dedicated to the product or quotient is not large enough to
hold the largest possible case.

129



For an unsigned multiply, overflow can occur if the results
registers do not hold at least a number of bytes equal to
the total number of bytes in the multiplicand and
multiplier. For example, a multiply of a one-byte number
by a two-byte number may produce a three-byte result
(but not greater than three bytes).

For an unsigned divide, overflow may occur if the
register(s) dedicated to the quotient is not equal to or
greater than the number of bytes in the dividend. The
worst case here is the divide-by-one case. Divide-by-zero is
‘not a legitimate operation and will result in a quotient of
all ones.

How do you detect overflow? Not by the P/v flag, which is
usually unrelated to the multiply or divide actions! You
must know the ranges of the numbers you’ll be dealing
with beforehand or be certain by testing the operands that
no multiply or divide operation will cause overflow.

Random Number Generation

Many times it’s necessary to generate “random” numbers.
The uses for random numbers ranges from simple
applications such as determining whether a plague will
strike in “Hammurabi,” to more complex simulation and
modeling.

There are really two types of “random” numbers —
pseudo-random numbers and true random numbers. True
random numbers aren’t predictable, but pseudo-random
numbers are.

True Random Numbers

An example of a true random number generation occurs
when a (perfect) die is rolled or when a (perfect) coin is
flipped. The next toss of the die or flip of the coin is
completely unpredictable. Over the long ‘run the

130

.
s




distribution of the points coming up on the die will
approach an even number of ones, twos, threes, fours,
fives, and sixes, and there will be close to an equal number
of heads and tails for the coin flip.

Can we get a true random number on the TRS-80? The
answer is a qualified yes. One way to get a 7-bit random
number is to read the contents of the R register in the
Z-80. The R register refreshes the dynamic memories by
counting from O to 127 and then recycling. If an external
event occurs at irregular intervals that are very large
compared to the R register counting, a true random
number is obtained.

One such external event is a keypress. If we look at R at
every keypress, we can obtain a good random number from
0 through 127. The code for such an operation looks for a
keypress and then reads R into the A register.

READ CALL INPUT iREAD KEYBOARD
JR Z+READ 3SGO IF ND KEYPRESS

LD AR iNOW HAWE RANDOM
# 0-127 IN A

Pseudo-Random Numbers

A pseudo-random number is predictable. As a matter of
fact, it’s convenient to have code that will start from a
given “seed” value and generate a whole string of numbers
without repeating each time we start from the same seed.
If we have such a routine, we can still get a good
distribution of all numbers over the range and repeat the
sequence any time we wish.

131



Hints and Kinks 6-5
Random Number Problems

One of the main rules in random number
generation is this: Never use any old
algorithm to generate what you think will be a
string of random numbers. If you take the
contents of HL, multiply by your Social
Security number., and add your best 10
kilometer running time to produce a series of
pseudo~random numbers, you're almost
guaranteed of producing a series that
tidecays'' down to 18766 after 32 numbers have
been produced. It's best to consult a good
programming text for some tried and true
algorithms. Even there, you'll find vehement
disagreement among computer scientists about
which methods are the best. {Personally, I

take my wife's Social Security number . . . .)

One of the common algorithms for generating random
numbers is to multiply an odd power of five times the seed
value. The multiply produces a 16-bit or greater product
(whatever we care to make it). When overflow results, the
product represents the remainder of a 64K (for 16 bits),
with the divide due to the length of the register. This
divide is called a modulus operation. The product is the
next pseudo-random number, and the process is repeated
indefinitely. The greater the length of the register holding
the product, the longer the cycle before the pseudo-
random number sequence repeats. For 32 bits, the cycle is
millions of numbers.

Two pseudo-random sequences are used in the codes of
Chapters 13 and 14. They're basically the same. One is
shown in Figure 6-12.

132




LEGR T
SYILSIDIY FYOISIY! o€
qags~TVNIDINO Hon! 1H*3q
X0 GNV S3ILXg 2 SW lovyign 28 °TH
$41xd 2 SH 130! (q3as)‘od
S3LXE 2 SH 1an! TH'aq
$ILRE 2 ST Lovyl€ns! o28° 14

AHEVD rasay!

¥
gLig s1 135! (2+q33s) ‘o

SYILSIDAY FAVS! o€
INIINOYENS
nNynLIy!

2aTYNTOINO MON! TH*3Q

S31X8 2 SN IJIHS! THTH

FLXg SH 139! THYAa

TH 14IHS! THTH

NI

NynL3Y!

4y

3a

SYAISINAY F¥oLSaY! TH

26 NI HON! H'D

g NI mon! 3‘q

TH' (2+q335)
$1 2+033S 34 dINOHS SSIHAAY 4VOT HIATEWISSY
SNOTSHAA JHOS NI HOMYA HAQYOT ITAISSOd wuw
a33s MIN 3yols! Fa‘(qaas)
G2Llw(335=03IS#E~G21eqaaT! ozonay
INO IovHElaEns! ans

Lovylans ¥oa4! £€'a

82140335 ¢ oLoHaY

1437 1I@ 3NO LITHS! L4IHS

g2t X7 X1dIlTad 404 INGOD! Ltg
(2+aq335) ‘14

a33s 139t (aaas)‘aa

TH

3a

SHILSIDFY FAVYS! iv

L R e Ry y E r Y YY)
08 1dd0Xd qIAVS SHALSIDIAN 1TV

#
M SEGG9-0 # HoaNvy=(
* SHALANIVEYd
x SEGGY OL 0 HOYJI UAGHAN HOGNVY-0ANISd V
* HILNOY yaaunN {oaNvy
Ly T Y T
aads
anNvy
gsanvy

ana

134

d0d

X3

o8s

a1

X3

288

¥0

a1
HSnd tgns
agds 1ovulgns !

134

X3

oay

X3
agy  :IJ4IHS
10089 LJAIHS ¢

13y

dod

dod

dod

a1

a1

a1
1qags
"Y3TIHISSY 40
¥wDNINUVMuwaun't

a1

ZNPa
TV 020oNaY

a1

ZHPa
TIV3 1 0L0KaY

at

an

a1

HSNd

HsNd
nend TQHYY

-
08)  f1IX3 *
O :Z4LNT *
SILYYANTD *
#*

»

FUERUEAR R RR AN
LX3
YL NI
a71ITL

00900
06500
08600
0L500
09400
04500
04500
0EG600
02400
01500
00500
06400
oghoo
0L400
09100
05100
Grt00
0E400
6enoo
oLroo
0oR00
06€00
08E00
0LEo00
09€00
0Gatoo
orEoo
0EE00
02£00
0LE00
00£00
06200
08200
0L200
09200
06200
orezoo
0€200
0eeoo
0ico0
00200
06100
08100
0Li00
09100
06100
ori00
0€Lo0
02100
0LL00
00L00

43
#0000 g4

2h
#2000 g

Vg9

#2000

#0000 ES

#0000 46§

60
[3¢)
a3
a3l
a3
g8
aa

ad
S0

60
83
a3
ad
62

60
1d

8¢5
of
En
2z

adg
01
as

01
ad
90
ve
ad
53
sa
G4

1 3£00
+9€00
VEOOD
+8E0D
s 1€00
«EEo0
+1€00
1+ 0£00
10200
19200

Y200
1+ 6200
1 Lzoo
19200
1 G200

200
1 £200
12200
1 LE200
+ 0200
+JIL00
12100

18100
19100
1E100
1 LEO0
13000
+3000
V000
 LoDO
1 £000
+ 2000
11000
+ 0000

Figure 6-12.
Pseudo-Random Number

Routine

133



The RAND routine performs a shift and subtract of the
four-byte SEED value. Seven shifts of SEED in DE, HL are
done by calling the SHIFT subroutine. This multiplies the
old seed by 128. Then the old SEED is subtracted three
times from the shift result to give SEED«125. The new seed
is stored into SEED for the generation of the next pseudo-
random number.

Towards Infinite Precision

A frequent question in assembly language is how to handle
large numbers. Multiple-precision adds and subtracts are
relatively easy to implement (by using ADC and SBC
instructions), but multiplies and divides of many bytes are
tedious to code.

When the range of numbers is very great, a better
approach is to implement floating-point processing in the
assembly language. Floating-point holds numbers in a
scientific-notation format geared to microcomputers (see
Figure 6-13). Unfortunately, the implementation of this
code for such processing is fairly complex.

SIGN OF FRACTION

BYTE @ BYTE 1
EXPONENT
+ X POWER OF lb FRACTION
— | (EXCESS b4 CODE) MS BYTE
FRACTION FAACTION
NEXT 51G. BYTE LS BYTE
BYTE 2 BYTE 3

Figure 6-13. Floating-Point Number
Representation (Typical)

Disk Editor/Assembler users have the arithmetic rou-
tines of the Disk Editor/Assembler library available to
them to perform addition, subtraction, multiplication,
division, and exponentiation of both integer and real
(floating-point) numbers. The Disk Editor/Assembler
manual describes the ways to use these options, but their
use basically involves setting up arguments for the func-
tion registers and then referencing the library routine by a
CALL. The library routine is then automatically loaded at
load time by the Disk Editor/Assembler Loader.

134




Chapter Seven
Working With Character Data

Assembly-language routines to generate and process ASCII
character data are our topics for this chapter. The first of
these routines is the procedure for reading ASCII
characters from the TRS-80 keyboard. Although ROM
routines can be used, constructing your own keyboard
scanning and conversion routines are not difficult and
offer a lot of versatility.

Other common character-processing routines found in
assembly-language programs are string input routines to
read in user character strings, message output routines to
display messages on the screen, character output routines
to echo input characters, and routines to convert between
binary data and ASCII decimal strings.

We'll get to all of these routines in this chapter, paying
close attention to the keyboard scanning process and
conversion to ASCII.

Keyboard Operation and Scanning

There are built-in routines in Level 1I BASIC and Disk
BASIC to read the keyboard and convert a keypress into a
character. The addresses and calls are documented in
other Radio Shack literature. However, we can bypass
these and read the keyboard directly. In doing so, we can
make the routine as versatile as we want by making the
keys represent any character or function!

The keyboard is really a matrix of switches as shown in
Figure 7-1. There’s nothing magical about its operation.
Pressing a key simply connects a column line and a row

135



line together for as long as the key is held down. There’s a '
certain amount of keybounce associated with the con-
nection. If we could observe the connection from a micro- j
scopic scale in slow motion, we'd see a definite “make- 4
break-make ... ” before the connection was firmly estab- )
lished. The same thing would happen when the key was ;
released. This process is shown in Figure 7-2. o
COLUMNS-CONNECT ok
TO ADDRESSED ROW
THROUGH SWITCH(KEY) .
L S\ aY ;A*
g
Y
MEMORY .
ADDRESS "
—_— 6 \FlELDLc|E|Al@ .
3801H \ ’\ k \ \ k AN 4 (F ADDRESSED N
(o} N \M 'R \K \.T \I H “9" IF NOT
3802H AL AL N N AN B N NG AN
Wl VI iul|T| SR LQLP :
N N .
3804H [ DN N N N N AN LN 4
KZ KNY L X )
3808H LN AN 4
. )7 (&6 [%5 [ $4 #3211 | B
M5 3s10H L A N D A N N A N
WA Sl Vo )9 (L8
3820H [N N N A N A O DN AN ML R
SPACE| —> | 4= | v 4 BREARCLEAR ENTER &
3840H R NN AN v
ISHIFT e d
3880H L \J
\‘/-"-h
s ‘s
g
Nl R
areaister [ | | [ [ [ [ [ ] 3}
7 6 543210 g

Y ‘< M Note: Model Il configuration
\b identical except that
LEFT SHIFT on column @,
RIGHT SHIFT on column 1. A

Figure 7-1. TRS-80 Model | »
Keyboard Configuration
(Upper Case) G

136




e | TYPICALLY lq———————-_
l 20-50 MS.

KEYBOUNCE KEYBOUNCE
ON MAKE ON BREAK

\
I

“MAKE™

/
i

Figure 7-2. Keyboard Bounce

Our job, and it’s fairly simple, is to convert a switch
connection defined by a row, column into an ASCII char-
acter and to debounce the contact to avoid reading the
same key many times.

Scanning

Each of the eight rows is addressed by a unique address, as
shown in Figure 7-1. The address of the first row is 3801H,
the second 3802H, the third 3804H, the fourth 3808H, the
fifth 3810H, the sixth 3820H, the seventh 3840H, and the last
3880H. How do we address the rows? By simply doing a
“load” from the memory location representing the row. To
address the third row, we’'d do

READ LD A(38B04H) SREAD KEYBOARD ROW 2

Here, we've called the row “row 27, as we counted from
w© »
row 07.

When the LD is executed, the A register is loaded with a
byte that represents the state of the column lines at that
instant in time. A column line will hold a one bit if a key
along the addressed row is being held down. If more
than one key along that row is being held down, there will
be several one bits. Note that the keys associated with
other rows are not detected at all.

137



The process of addressing eight rows, one at a time, and
looking for a one bit representing a keypress is called
keyboard scanning. Since an LD instruction takes about
8 microseconds (8 millionths of a second), you can do this
keyboard scan very quickly relative to a keypress. You
might hold down the typical key for 50 milliseconds or so,
representing the time of 250 complete scans!

The processing for detecting any keypress, then, is really
very simple and goes something like this:

1. Read row 0, address 3801H. Look for a non-zero value.
If zero, go on else go to step 9.
2. Read row 1, address 3802H. Look for a non-zero value.
If zero, go on else go to step 9.
3. Read row 2, address 3804H. Look for a non-zero value.
If zero, go on else go to step 9.

7. Read row 6, address 3840H. Look for a non-zero value.
If zero, go on else go to step 9.

8. Scan complete and no key press. Go back to step 1.
9. Keypress here. Row number is known. Find column
number by finding which bit of the eight columns is a
one. Read the state of row 7, the SHIFT key and record it
if necessary. Convert the key to ASCII or another code
and take action on it.

Conversion

When the keyboard scan detects a non-zero value in any
row, the next step to perform is conversion of the row,
column representation into ASCII or some similar code. For
example, the intersection of row 2, column (bit) 3 is asso-
ciated with the key marked S on the keyboard.

The usual conversion of this key will, of course, be to an
ASCII S, or 53H. There’s no reason, however, that you can’t

3ty

convert this key to a code that means “scroll up,” “insert,”

138




“get the next disk sector,” or anything else you want. The
point is that the conversion routine simply converts one of
53 keys to any value the programmer wants. Usually
these values are ASCIL.

The algorithm for the conversion is this:

1. Take the least significant byte of the row value —
1,2,4,8,16,32, or 64. Convert to the row number of
0,1,2,3,4,5, or 6.

2. Multiply the row number by 8. We now have 0,8,16,
24,32,40, or 48.

3. Add in the column bit number of 0 through 7. We
now have a unique value from 0 through 55, represent-
ing the key that has been pressed.

4. If the SHIFT key is to be used, add 0 if no SHIFT or 56
if shift. We now have a unique value of 0 through 111
representing the key that has been pressed and the
“upper-” or “lower-case” status.

5. Use the value obtained above to get one of 56 or 112
bytes from a keyboard conversion table. The byte ob-
tained will be the ASCII value of the key, or whatever
code we want to use for the key.

Hints and Kinks 7-1
Keyboard Algorithm

The index to the keyboard conversion table is
given by:

Index = (Log (base 2) (Row Address—3800H))*8
+Column Number + 56%(Shift)

Here Shift=0 for no shift and 1 for shift

Suppose that the $ key was pressed in Figure
7-1. We'd have:

Index = {Log (base 2) (3810H-3800H))*8 +
Column Number + 56«%(Shift)

Index = (Log (base 2) (16))*8 + 4 + 56x1 =
4+8 + 4 +56 = 92

139



Debouncing

Debouncing is necessary because of the high speed of
keyboard scanning. If we scanned the keyboard, converted
a key, stored the value, and then came back to repeat the
process for the next key, we’d probably be able to start the
next scan after 200 microseconds. Since the typical key is
held down for 50 milliseconds, we’d pick up the key 250
times again!

We need to delay a certain amount of time after we first
detect and process the key. This delay will be long enough
so that the key is released in the interim. If we are
speaking of average typing speeds of 40 words per minute,
the number of characters per second are about 4 or less.
This is one every 250 milliseconds or so. Delaying 100
milliseconds then, should more than handle average typ-
ing speeds and yet bypass the period during which the key
is held down.

Hints and Kinks 7-2
tiAuto' ' Key

One of the easier things to implement in an
assembly-language keyboard routine is an
tigutomatic'' key function. If you hold the
key longer than the 100 millisecond delay, it
is reread. This results in an '‘auto'' key
function for any key, which will operate at 10
characters/second.

There are more sophisticated keyboard decoding routines
that handle “n-key rollover” in which you can press a new
key while you are still holding the old, but the delay
technique above is fine for most processing.

A Typical Keyboard Subroutine

We now have all the elements we need to read and convert
the keyboard. Figure 7-3 shows a complete subroutine that
will perform the task.

140




Fooo 00100 ORG
E¥

OFQQQH
00110 ;4sanExs AR BN E RS R AR R R RN R NN R R R AN N R A RN AN RN

00120 ;% READ KEYBOARD ROUTINE L
00130 % ENTRY: NO PARAMETERS *
00140 ;* EXIT: (A)=KEY CONVERTED TO KBLUT VALUE *
00150 ;* OR ZERO IF NO KEY HAS BEEN PRESSED *
00160 ;illl.i!il!lllill!l!llllllllllil!l!ll!l‘i!lllllll!!!lllll
00170
60180 ; SCAN SEVEN ROWS
FO00 210138 00190 READKB LD HL,3801H ;ROW O ADDRESS
F003 7E 00200 REAO1O LD A, (HL} iGET ROW VALUE
Fooy B7 00210 OR A ;s TEST FOR ZERO
FG05 2005 00220 JR NZ,REAQ20 ;GO IF KEY THERE
F007 CB25 00230 SLA L {SHIFT ROW ADDRESS
FoO0g F8 00240 RET H :GO IF LAST ROW, NO PRESS
Fooa 18F7 00250 JR REAO10 {MORE ROWS TO GO
00260 ; CONVERT ROW, COLUMN TO INDEX
FOOC 4F 00270 REAO20 LD C.A s ROW VALUE
FOOD AF 00280 XCR A ;ZERO A
FOOE CB3D 00290 REA025 SRL L ;SHIFT ADDRESS
FO10 3804 00300 JR C,REAQ35 ;GO0 IF DONE
FO12 C608 00310 REA030 ADD 4,8 ;ROW¥S
FO14 18F8 00320 JR REAQZ25 ;CONTINUE
FO16 O6FF 00330 REA035 LD B, OFFH sCOLUMN COUNT
FO1E 04 00340 REAOUO INC B ;BUMP COUNT
FO19 CB39 00350 SRL c ;SHIFT ROW VALUE
F01B 30FB 00360 JR NC,REAQ4OQ sCONTINUE TILL "1™ OUT
FO1D 80 00370 ADD A.B ;NOW ROW®*8+COL IN A
FO1E 4F 00380 LD C.A :TRANSFER TO C
00390 : FIND TABLE ENTRY
FO1F 3A8038 00400 LD A,(3880H) {SHIFT ROW ADDRESS
Foz22 BT ooL410 OR A ;TEST FOR SHIFT
F023 2802 00420 JR Z,REAQLS ;G0 IF NONE
Fo2s 3E38 004 30 LD 4,56
F027 &1 00440 REAOQ45 ADD A,C ;ADD HASH+SHIFT#*56
F028 4F 00450 LD C,A s NOW ROW#B8+COL¥*SHIFT#56
F029 0600 00460 LD B, O ;NOW IN BC
F02B 213AF0C ooL170 LD HL,KBLUT ;ADDRESS OF LOOK UP TABLE
FO2E 09 00480 ADD HL,BC ;POINT TO CODE
FO2F 7E 00490 LD A, (HL} sGET VALUE
00500 ; DEBOUNCE DELAY
F030 210021 00510 LD HL,B8448 ;100 MS DELAY
F033 O01FFFF 00520 LD BC,-1 ;DECREMENT
F036 09 00530 REA0%0 ADD HL,BC ; DECREMENT COUNT
F037 38FD 00550 JR C,REAO50 ;GO IF NOT DONE
F039 C9 00550 RET sRETURN WITH CODE IN A
00560 ; LOOK UP TABLE
0008 00570 KBLUT DEFS 8 {ROW 0 LC
0008 00580 DEFS 8 JROW 1 LC
0008 00590 DEFS 8 ;ROW 2 LC
0008 00600 DEFS 8 ;ROW 3 LC
0008 00610 DEFS 8 ;ROW 4 LC
0008 00620 DEFS 8 sROW 5 LC
0008 00630 DEFS 8 ;ROW 6 LC
0008 00640 DEFS 8 $ROW 0 UC
0008 00650 DEFS 8 ;ROW 1 UC
0008 00660 DEFS 8 ;ROM 2 UC
0008 00670 DEFS 8 ;ROoW 3 UC
0008 006 80 DEFS 8 ;ROW 4 UC
0008 00650 DEFS 8 +ROW 5 UC
0008 00700 DEFS 8 ;ROW 6 UC
0000 Q0710 END
00000 TOTAL ERRORS
Figure 7-3.
Keyboard Read
.
Routine

141



The subroutine is divided into scanning, converting to an
index value, finding the lookup table value, and
debounce delay.

The scanning cycles through the addresses of 3801H
through 3840H. HL is initialized with 3801H. Thereafter,
only L is shifted left to get the “02H”, “04H”, etc. For each
address, an LD A,(HL) is done to read the row. If the result
is zero, the scan continues. If all addresses through 3840H
are used and no key is found, the subroutine exits with
zero in A.

If a non-zero value is found, the row address is converted
to 8 times the row number by successive adds of 8. The
column number is then added to this by simply adding the
value obtained from the read. We now have 0 through 55.

The shift key is read by a LD A,(3880H). If there’s a shift, a
value of 56 is added to the value from above. If there’s no
shift, 0 is added.

The index value is then used to pick up one byte from the
KBLUT, the keyboard look up table. The last action is to
delay 100 milliseconds by a timing loop.

The KBLUT should be assembled with standard Radio
Shack ASCII and control codes. Any other codes could be
substituted by the user. The orientation of the codes is
opposite that of Figure 7-1. The first 8 bytes, for example,
would be the codes for @, A, B, C, D, E, F, and G.

142

.
=




Other Keyboard Subroutines

We used some variations on the above routine in the
programs of Chapters 13 and 14. Chapter 13 uses a special
keyboard routine that is geared to a quick scan and return
if no key has been pushed. The quick scan is implemented
by an LD A (387FH) shown in Figure 7-4. This reads in all of
the rows at one time and merges all column bits. If there
is a zero in A after this instruction, no key is being
pressed. If the result is non-zero, the usual row-by-row
scan is used.

Q6LTQ ;EWEXEXEERXEXXXBKEYBOARD INPUT SUBROUTINEWEFEZEREZRZEIRNRR
o6uB0 :* IF DEBOUNCE DELAY LESS THAN ELAPSED TIME, SCANS

*
06490 ;*® KEYBOARD AND STORES POSSIBLE INPUT CHARACTER IN *
06500 :* CIRCULAR INPUT BUFFER. *
06510 ;% ENTRY: NO PARAMETERS *
06520 ;% EXIT: NO PARAMETERS '
06530 ¥ ALL REGISTERS SAVED *
06540 ;¥ CLEAR CHARACTER CAUSES RESTART AT MORO15H, SP RESET#
06550
8429 F5 06560 INPUT PUSH AF JSAVE REGISTERS
8u2A 3ATF38 06570 A,{387FH) ;ALL IN ONE SWELL FOOP
842D BT 06580 OR A ;TEST FOR ANY KEY
842E CABY8X 06590 JP Z,INP065 31GO IF NONE
8431 CS 06600 PUSH BC
8432 E5 06610 PUSH HL
8433 2AED8S 06620 LD HL, (TSLC) sGET TIME SINCE LAST CHARACTER
8436 016400 06630 LD BC,DBDEL ;MINIMUM DELAY
READS ALL
KEYBOARD ROWS,
MERGES ALL
COLUMN BITS

Figure 7-4. Quick Scan

The INPUT subroutine of Chapter 14 (Figure 7-5) is a
specialized keyboard input. It looks only for a 0 through 8
key by reading row 4 and row 5. Row 4 addresses keys 0
through 7, while row 5 addresses only key 8 in bit 0. Ifa
key is found, a 100 millisecond delay is done by calling the
DELAY subroutine.

143



pieogAay |einads ‘-2 a.nbiy

peay

21901
10
21901
8 avay av3y

ans

L3y

bk} d04d

SHILSINIY JHOLSIY! TH d0d

xv13qd AV13Q 11¥9
A¥130 OISITIIH 00! 00t ‘1H a7 :020dNI

Xd% @ §o4d-° g’y a1

INON 41 09! 200dNI‘2Z ue

XINO X3Y ufu 130 i any
S Mod quvogxgx! (Ho2RE) ‘v a7 _$0L0dNT

FONILNOD* 0Z0dNT ur

¥ 0l INAOD! o'y a1

XHHYD LON 4TI 09! SOOdNI‘ON ur

100 LJIHS! vouy
INNOD dWng! 2 NI :G004aNT

LNOOD NHATOD! H440°D a1

NON 41 09! 0L0dNI‘Z ur

OY3dZ-NON ¥04 LS3l! v ¥0
h_MOY QHYOERINA! (HOLBE) ‘Y 471 :200dNI

TH HSNd
SHILSINIY FAVS! 28 HSOd  tindNl

IEXEEEEZ XSS SRS EZEERRRZSSRAEEESRRRRREE LRI EEEEEEEEER XYY

MO *Lg‘Sfp‘Ef2* L0 40 LNdNI HOd QUVOHXIN SHVIS

[
"
3
# "S$JIYd XIN HOJ SIIVM
#
%
[

BANBGURARES AP ANAFRANNBADGENIRIDNAARRANBDUARVIGOANRVENY

"SHAHLO TV SIHONOI
INILAOHENS LOdNT
Av13aq

LOdNI
YSNdNT

G3AVYS ¥ LdHOXd SHALSIOAM 11V
XMYNIG NI 8 ¥0 ‘L'9‘a‘n‘E*e*i’o=(v)
SHILINVHYL ON

1X3

AHINZ
ITLIL

[
FLIXI #
fAHING "
“SXAA 8 *
»

#

1)

¢
il
]
¢
]
:

I

024800
oLnoo
00100
06£00
ogEoo
0LE0O
09£00
0%€£00
0HEDD
0EE00
0z£00
0LEQD
00E00
06200
08200
0Lz00
05200
05200
onZoo0
0€200
02200
0L200
00200
06l00
08100
olioo
09100
06100
ohioo
0EL00
02100
0LL00
00tL00

#0000
1300
80

va

028€
60

24
a4
60

OLgeE

12200
11200
10200
«Qt00
Y100
18100
19100
s hE00
sli00
+ 3000
14000
+3000
18000
1V 000
18000
+ 9000
16000
12000
+ 1000
10000

Input Subroutines

string but

king or make any judgments about

fairly easy to write code to read in a string of characters.

This is usually a subroutine that reads in the

doesn’t do syntax chec
left to other routines that will process the input character

the validity of the data that has been read in; that task is
string.

Once you have implemented a keyboard input routine, it’s

144



The “input string” subroutine must, however, make some
checks. First, there must be some terminating input
character that signifies the end of the input process. If
there were not, the input-string subroutine would call the
keyboard-input subroutine again for the next character,
when the user was actually through with input. The
terminating character in the TRS-80 is almost always
ENTER.

Second, there may be a maximum number of characters to
be input. You may need to specify the number because the
input buffer is of limited size, or because all input should
be less than a certain number of characters.

Other options for the input string routine might include a
means to backspace (rubout) an incorrect character or
characters from the string and a returned count of the
number of characters input.

Hints and Kinks 7-3
Backspacing

Backspacing is not implemented in the input
routines of Chapters 14 and 15. The reason is
that most input in routines of those chapters
involves either one or two characters which
are easily redone if an error is made.

Also, implementation of backspacing is best
done when the input involves an entire line of
data, as it does in BASIC. When a line is
input, an input buffer is filled with the
character data before any processing is done.
Processing is done after the terminating char-
acter (ENTER in BASIC) has been entered. When
the *‘input line'' approach is used, it is a
simple matter to detect a backspace (left
arrow or rubout), adjust the buffer pointer to
point back at the last character, and then
overwrite the last character.

Have I given enough excuses?

145



Figure 7-6 shows a somewhat atypical input string sub-
routine from the MORG program of Chapter 13. It calls a
keyboard input routine called INPUTW that returns the
next keyboard character. INPUTW specifically waits until a
key has been pressed and always returns a character. The
INPUTS subroutine terminates on an ENTER character, and
each new character is compared to ENTER, which is
EQU(ated) earlier in the program. (Note here that the code
for ENTER in this keyboard program is 02H.) If the char-
acter input is an ENTER, the subroutine is exited. Other-
wise a character count is incremented in the C register,
and the character is displayed on the screen by the DISCHR
subroutine.

06180 ’lllllliilllllillNPUT STRING SUBROUTINE###tsscasssssnsass

06190 ;¥  INPUTS STRING OF CHARACTERS AT CURRENT COMMUNICA- *
06200 ;%  TION AREA. TERMINATED BY ENTER. #
06210 ;%  ENTRY: (BJ}=MAXIMUM NUMBER #
06226 ;®*  (CURCUR)=CURRENT CURSOR POSITION #
06230 ;%  EXIT: (B)=ACTUAL NUMBER INPUT '
062540 ;% (HL)=FIRST CHARACTER LOCATION *
06250 ;*® NZ IF GT MAXIMUM NUMBER #
06260 ;*® Z IF LE MAXIMUM NUMBER *
06270 ;®  ALL REGISTERS SAVED EXCEPT HL,BC,4 #
06280 ;

840D 2AE985 06290 INPUTS LD HL,(CURCUR} i CURRENT CURSOR POSITION

8410 ES 06300 PUSH HL i SAVE

8411 o4 06310 INC B {BUMP MAXIMUM

8512 OEO0O 06320 LD c,0 ;INITIALIZE COUNT OF CHARS

8414 €5 06330 INSO10 PUSH BC 1SAVE COUNTS

8415 CDF384 06340 CALL INPUTW $GET CHARACTER

8418 €1 06350 FOP BC sRESTORE COUNTS

8419 FEO2 06360 cP ENTER ;TEST FOR DONE

8418 2809 06370 JR Z,INS030 1GO IF ENTER

841D ocC 06380 e c ;BUMP CHARACTER COUNT

841E CDBEB3 06390 CALL DISCHR ;DISPLAY

84521 10F1 66400 DJNZ INS010 ;GO IF NOT MAXINMUM

8423 3EFF o610 LD ALOFFH ;=1 TO A

8425 BT 06420 OR A {RESET Z FLAG

8426 E1 06430 INS030 POP HL {RETRIEVE START

8427 41 o6liig LD B.C {GET CHARACTER COUNT

8428 €9 06450 RET +RETURN
06460

Figure 7-6. Input String
Routine

146

-




Hints and Kinks 7-4
Scanning Versus Waiting

The usual keyboard input routine is a
'‘read-one—character—and-wait-until—-input''
type. It will never return until that
character has been input. The rationale is
that this is the most frequent type of input;
the program asks for user input before
processing.

The scanning type of input routine is used
less frequently. Here, the program is
processing merrily along but is keeping an eye
out for a user stimulus. This stimulus is
usually a user ‘‘abort'' action, although it
could be normal keyboard input, as in the case
of the MORG program of Chapter 13. The goal in
this type of input routine is to make certain
that the polling of the keyboard input is done
periodically at regular measured intervals (so
that no characters are missed) and yet done
fast enough that other processing can continue
without being overburdened by the keyboard
poll.

In many other systems, input of infrequent
{compared to CPU processing) keyboard
characters would be accomplished by an
interrupt from the keyboard when the next
character was ready. That way, normal
processing would continue until the keyboard
interrupt was received, eliminating the
polling task. One way to time the polling on a
disk system is by using the system's
real-time~clock. It provides 25 millisecond
increments, which lend themselves nicely to
timing any type of polling function.

The B register initially held the maximum number of
characters to be input plus one. After each character is
input, B is decremented by a DJNZ. If less than the
maximum has been input, the code goes to the next

147



character. If the maximum number of characters has been
input, the subroutine is terminated with an error flag of
“NZ”,

The characters are stored in the video display memory.
This causes no problem as long as the characters are valid
ASCII characters. However, non-standard characters may
be changed in the upper-case versions of the TRS-80. The
DISCHR routine is called to display the input characters
because input in assembly language does not automati-
cally display the characters as a BASIC input does!

Display of Characters

This brings us to a discussion of the next topic — what has
to be done to display character data in assembly language?
BASIC has built-in print driver routines that handle all
output of characters. Character strings are “formatted”
and tabbed, new lines are output, the screen “scrolls”
automatically, etc.

Unless you make calls to the BASIC routines to perform
these functions, you must implement all display proces-
sing via assembly-language routines. Fortunately, display
processing is not that involved, and we’ll look at some of
the techniques here.

Displaying A Message

To display a message on the screen, a string of ASCII
characters from a DEFM is output one at a time to the
screen memory area. It’s convenient to have a terminating
character to end the message. The terminator we've used
in the programs of Chapters 13 and 14 is a zero (null) at
the end of each message. We used the zero because it is not
a valid ASCII character and we can easily test it.

An alternative to using zero is to use the disk Editor/
Assembler “DC” pseudo-op, which sets the high-order bit of
the last character to one. This can also be easily detected
(and masked out) for the “end of message.”

148




Hints and Kinks 7-5
DC Pseudo-0p

Perhaps the DC pseudo-op should have been used
in the code of Chapters 13 and 14 since it is
specifically for generating character strings
for output. The output routine would then test
the sign bit of every character and terminate
when a *'minus'' was detected. The scheme used
in the code of the applications programs
wastes one byte for each message. Thank
goodness memory is inexpensive!

The screen area for the message is usually pointed to by
the HL register or another register pair. It is incremented
by one for every new ASCII byte output. Figure 7-7 shows
the DSPMES subroutine from Chapter 13. This subroutine
uses HL to point to the ASCII message and BC to address the
“starting screen address.” The starting screen address
would be 3C00H through 3FFFH.

OLB50 ;*#easwanuaxeesaDTSPLAY MESSAGE AT LOCATION NERsssssssnss
04860 .' DISPLAYS MESSAGE AT GIVEN SCREEN POSITION. TER-

04870 % MINATES ON NULL (ZERO).

04880 ,' ENTRY: (HL)=MESSAGE LOCATION

04890 ;* (BC)=SCREEN POSITION

04900 ;* ALL REGISTERS SAVED.

04910
836D F5 04920 DSPMES PUSH AF iSAVE REGISTERS
836E C5 04930 PUSH BC
836F E5 04940 PUSH HL
8370 7E 04950 DSP0O5 LD A, (HL) ;GET MESSAGE CHAR
8371 BY 04960 OR A ;TEST FOR 0
8372 2809 Q970 JR Z,DSPO10 s RETURN IF DONE
8374 02 04980 LD (BC).A ;STORE CHARACTER
8375 03 04990 INC BC :BUMP SCREEN ‘POINTER
8376 23 05000 INC HL ;BUMP MESSAGE POINTER
8377 ED43EYB5 05010 LD (CURCUR),BC $SAVE POINTER
837B 18F3 05020 JR DSPOOS ;CONTINUE
837p E1 05030 DSPOT10 POP HL ;RESTORE REGISTERS
837E C1 05040 POP BC
837F F1 05050 POP AF
8380 €9 05060 RET s RETURN

Figure 7-7. Display Message
Routine

149

&
#
*
#*
k2



DSPMES also stores the “current cursor position” in vari-
able CURCUR. This variable can be tested for “end of line”
or “end of screen” (scrolling) conditions.

Displaying an Input Character

When you input a character from a keyboard routine, it
must be immediately “echoed” to the screen by a “display
character” routine. This subroutine would typically take a
“current cursor position” and use it as the address of the
screen position to store the input character. Figure 7-8
shows such a routine that uses variable CURCUR as the
current cursor position.

05510 ;EessRessea#88¥DISPLAY CHARACTER SUBROUTINE#RI¥AIAXRRZER

05520 :% OUTPUTS ONE CHARACTER TO CURRENT CURSOR POSITION
05530 :;® ON SCREEN. MOVES CURSOR TO NEXT POSITION UNLESS
05540 ;%  LAST CHARACTER POSITION OF LIKE 11. IF LATTER,
05550 ;*  SCROLLS UP FIRST,
05560 :®  ENTRY: {CURCUR)=CURRENT CURSOR POSITION
05570 ;*® (A}=CHARACTER TO BE QUTPUT
05580 :*  ALL REGISTERS SAVED.
05590
83BE €5 05600 DISCHR PUSH BC 1SAVE REGISTERS
83BF E5 05610 PUSH HL
83C0 2AE985 05620 LD HL, (CURCUR) $GET CHARACTER POSITION
83C3 77 05630 LD (HL), A ;STORE CHARACTER
83C4 OTFF3E 05640 LD BC,3CO0H+767 {LAST CP OF LINE 11
83C7 23 05650 INC HL ;BUMP CURSOR
83C8 22E985 05660 LD (CURCUR}, HL {STORE
83CB B7 05670 OR A JRESET CARRY
83CC ED42 05680 SBC HL,BC JTEST FOR LAST
83CE 2003 05690 JR NZ,DIS0G10 ;RETURN IF NO SCROLL
83D0 CDD683 05700 CALL SCROLL {SCROLL UF
83D3 E1 05710 DIS010 POP HL ;RESTORE REGISTERS
83Dy C1 05720 POP BC
83D5 €9 05730 RET :RETURN

Figure 7-8. Display Character
Routine

Scrolling

DISCHR also tests CURCUR for a condition where scrolling
is required. This condition normally occurs when the last
character position on the screen, location 3FFFH, has been
used. At that point you must scroll up the screen by
moving lines 1 through 15 into lines 0 through 14, and
“blank” the last line.

It’s possible to scroll the first five or ten lines since we can
format the screen any way we want — it's simply a matter

150

#
3
#
]
#
#
#




of coding! The SCROLL routine in Figure 7-9 scrolls the
first 12 lines on the screen when the CURCUR reaches the
end of the 12th line. Figure 7-10 shows the action.
Scrolling on the TRS-80 is easy because of the LDIR
block-move instruction and the fact that the screen is
memory mapped. FILLCH is a “Fill Character” routine to
fill the last line of the screen with blanks.

83D6
83D7
83D8
83D9
83DA
83DD
83E0
83E3
83E5
83E8
83EA
83ED
83F0
83F3
83F6
83F7
83F8
83F9
83Fa

F5

c5

D5

ES
11003C
21503C
010003
EDBO
11C03E
3E20
014000
CDB385
21C03E
22E985
E1l

D1

<1

F1

€9

05740
45750
05760
05770
05780
05790
05800
05810
65820
05830
05840
05850
05860
05870
05880
05890
05960
45910
05926
05930
05940
05950
05960
05970
05980
05990

“BLOCK” MOVE TO
DO THE ACTUAL
SCROLLING

;llilillllllll!lscROLL SCREEN SUBROUTINE®* ¥ S EXEREENZRNSS
SCROLLS LINES 1-11 UP TO LINES 0-10. FILLS LINE 11 *

s
A WITH BLANKS.
Hl ENTRY: NO PARAMETERS
A ALL REGISTERS SAVED,
SCROLL PUSH AF
PUSH BC
PUSH DE
PUSH HL
DE, SCREEN
HL,LINE?

BC,1024-256

DE,LINET1

*
L3
*

;SAVE REGISTERS

{START OF SCREEN

JLINE |

;4 TO MOVE

iMOVE EM

{START OF LINE 11
i SPACE

i# TO FILL

SFILL LINE

{START OF LINE 11
{RESET

sRESTORE REGISTERS

;RETURN

FILLS 12TH
LINE WITH
BLANKS AFTER

SCROLL

Figure 7-9. Scroll Screen

Routine
LosT
}
N
b
J
]
7
J ON SCROLLING
g LINES 1-11
REPLACE
M LINE 0-18
)
J
J
& N
I\ THIS LINE
“COMMUNICATION AREA” FILLED WITH
BLANKS
AFTER SCROLL

Figure 7-10. Scroll Action

151



Hints and Kinks 7-6 v
Multiple Scrolling h

The TRS-80 screen can be divided up into any
number of separate scroll areas by using the
techniques shown in Figures 7-9 and 7-10.
Implementing a ''split screen'' capability,
however, is another problem. Split screens
split the screen into a right and left hand
portion and can be very useful for comparing
0ld text with new text or working with two
ttdocuments'’' at a time. ]

TEXT ON LEFT|TEXT ON RIGHT

One way to implement a split screen of this
type would be to look for a screen address
with the last 5 bits equal to 1l 111ll. This
would denote the 31st character of either the
left or right hand segments. This scheme works

because lines start at '‘'40H boundaries,'' as J

they are 64 characters wide; line addresses o

always start at XXOOH . XX40H, XXKBOH» or & L
o,

KXCOH. When this address was detected., the
left or right hand pointer could be reset to
the beginning of the line by adding 20H.

Scrolling is also more tedious (read

‘‘messy''), because the areas involved are not
contiguous. A scroll would have to be handled ‘
one 32-characier line at a time. P

=

All of this is possible, but it might be best
to orient your applications towards multiple
screens stacked on top of each other, rather
than side by side — unless you're the stubborn

type .

152 o



Conversion From ASCII Decimal to Binary

A character string input from a keyboard or “input string”
routine usually contains a mix of string data such as
names and addresses and numeric data. The string data
can be left as is in ASCII form for storage in arrays or
records. However, you have to convert the numeric data to
binary for processing. Any program that works with
numeric data that is user entered invariably has a
“decimal-to-binary” conversion routine.

The algorithm for converting from ASCII characters of ©
through 9 to binary goes something like this (and is shown
in Figure 7-11):

Clear a result total.

Multiply the result total by 10.

Get the leftmost ASCII character.

Subtract 30H to get a binary value of 0 through 9.
Add the value to the result total.

Repeat steps 2 through 5 for the next leftmost
character until done.

O UL D

NUMBER IN BUFFER

(asch)
[1]2]3]4]5]
¥ 1
STEP RESULT RESULT « 10 NEXT CHAR —30H ADD TO RESULT

1 0 0 31H 1 1

2 1 10 32H 2 12

3 12 120 33H 3 123

4 123 1230 34H 4 1234

5 1234 12340 35H 5 12345

(BINARY)

Figure 7-11. Decimal-to-Binary
Action

You can carry out this conversion process for a string of
ASCII digits as long as need be. Practical sizes, however,
are limited to values that can be held in 16 or 32 bits.
Since 16 bits can hold up to 65535, a decimal-to-binary
routine that works in 16 bits can process most applica-
tions.

153



Decimal-to-binary routines also usually do testing of the
ASCII characters to determine that they are valid ASCII
values of 30H () through 39H (9). If they are found to be
invalid values, the conversion is terminated with an
“error” flag.

Figure 7-12 shows a DECBIN subroutine from Chapter 13
that converts a string of ASCII characters representing a
decimal value to a binary value of 0 through 65535. A
“shift and add” technique is used to multiply by 10. The
routine is entered with HL pointing to the buffer con-
taining the string and B containing the number of char-
acters to be converted.

CLEAR RESULT TOTAL

08970
0898¢
08990

jRESREBR8DECIMAL TO BINARY CONVERSION SUBROUTINE#®*%akzszs
CONVERTS UP TO SIX ASCII CHARACTERS REPRESENTING
DECIMAL NUMBER TO BINARY. MAXIMUM VALUE IS 65535.

13 1
& [
03000 b ¥ ENTRY: (HL)=BUFFER CONTAINING ASCII #
09010 ¥ (B)=NUMBER OF CHARACTERS @
09020 ;\* EXIT: (HL)=BINARY # 0-65535 #
09030 ;i NZ IF INVALID ASCII CHARACTER OTHERWISE Z @
09040 ALL REGISTERS SAVED EXCEPT A,HL ®
09050 ;
8590 C5 09060 DHCBIN PUSH BC $SAVE REGISTERS
8591 D5 09070 PUSH DE
8592 DDES 09080 PUSH iX
8594 DD210000 09090 LD I%,0 ;SET RESULT
8598 DD29 09100 [DECO40 ADD IX,IX tINTERMEDIATE®R2
8594 DDES 09110 PUSH IX
859C Db29g 09120 ADD IX, IX HL]
859E DD29 09130 ADD IX,IX ;%8
8540 D1 09140 POP DE i #®2
8541 DD19 09150 ADD 1¥%,DE ;510
8543 7E 09160 A LD A, (HL) sGET CHARACTER
85A%F D630 09170 suB 30H s CONVERT
85A6 FAB68S 09180 JpP M,DECO70 sGO IF LT ™07
8549 FEOA 09150 cp 10 ;TEST FOR GT "¢g"
85AB F2B685 09200 JP P,DECOTGC sGO IF GT g
BS5AE SF 09210 LD E,A sNOW IN E
85AF 1600 09220 I LD D,0 ;BOW IN DE
85B1 DD19g 09230 | ADD 1X,DE | yHERGE 1
85B3 23 09240 INC HL &
85B4 10E2 09250 DJNZ DECO4Q ;G0 IF HORE
85B6 78 09260 DECO70 LD A.B ;COUNT TO A
§5B7 BT 09270 OR A ;SET OR RESET Z FLAG
85B8 DDES 09280 PUSH IX sRESULT TO HL
85BA E1 09290 POP HL
85BB DDE1 09360 POF IX ;RESTORE REGISTERS
85BD D1 09310 POP DE
85BE C1 09320 PoP BC
85BF C9 09330 RET s RETURN
GET BINARY
MULTIPLY RESULT VALUE
ADDB TO
TOTAL BY 10 RESULT
TOTAL

Figure 7-12. Decimai-to-Binary
Routine

154

|

1




The conversion loop is executed “B” times. After the sub-
tract of 30H, an error return is made if the result is
negative (less than 30H), or greater than 9 (greater than
39H). An NZ condition is present on return if there was an
invalid character.

Converting From Binary to Decimal ASCII

This processing converts binary data back into displayable
or printable form. As in the case of DECBIN above, the
same size limitations apply. Usually 16 or 32 bits of binary
data are converted to ASCII decimal digits.

The “normal” algorithm for this conversion is the follow-
ing:
1. Divide the binary data by 10.
2. Save the quotient of the divide for the next divide.
3. Add 30H to the remainder to produce an ASCII
through 9.
4. Store the ASCII character at the next rightmost
character position in a buffer.
5. Repeat steps 1 through 4 until the quotient is zero.
These steps are shown in Figure 7-13.

NUMBER IN REGISTER

(BINARY)
12,345
STEP DIVIDE BY 10 Q R ADD 30H TO RSTORE IN BUFFER
1 12345/10 1234 5 35H CT TT1T T5]Gsen
2 1234110 123 4 34H [T T T4a¥s5]
3 123/10 12 3 33H [ [ [3T475]
4 1210 1 2 32H | 12]314]5
5 110 ) 1 31H 12374 ]s]

Figure 7-13. Binary-to-Decimal
Action

155



The BINDEC subroutine of Figure 7-14, however, employs
an alternative approach. It uses a “divide by powers of 10”
method of conversion. Starting with 10000, it performs
successive subtractions on the binary number to divide by
the power of 10. The quotient for each subtract is the
power of 10 digit, which is then converted to ASCIL. Suc-
cessively smaller powers of 10 down to 1 are used. The
algorithm for this is shown in Figure 7-15.

80060 00100 CRG 8000H 4
Q0110 ;SEEE kAR KN A RR AR B O SRR DR N BN R R R R U R B RN FF R TR R R B R AR R AR RN k)

00120 ; BINARY TO DECIMAL SR ® A
00730 :* ENTRY:(HL)=16-EIT BINARY VALUE * -
00140 ;% (IX)=POINTER TC START OF CHARACTER BUFFER ®
00150 :* EXIT: (BUFFER)=FILLED WITH FIVE ASCII CHARACTERS, ¥
00160 ;¥ LEADING ZEROES *
00170 ¥ (IX)=BUFFER+5 u
00180 ;l!!ll!iiE*liil!lli!ﬂ&l’iill!ll!i&ii!‘)i!ilili‘!‘!i!!!lﬁil
00160 ;
8000 FD212580 00200 EINDEC LD IY,PTABLE :POWER OF 10 TABLE
8004 AF 00210 BINO1O XOR A :DIGIT COUNT TO O
8005 FD5601 00220 LD D, (I1+1) {GET MS BYTE
8006 FDSE0O 00230 LD E,(IY+0) {GET LS BYTE
800B B7 00240 BINO20 OR A ;CLEAR CARRY
800C EDS2 00250 SBC HL,DE {SUBTRACT POWER OF 10
8GOE 3803 00260 JR C,BIKO30 :GO IF NEGATIVE
8010 3C 00270 INC A ;BUMP DIGIT COUNT
8011 18F8 00280 JR BING20 :CONTINUE
8013 19 00290 BINO30 ADD HL,DE :RESTORE TO POSITIVE
8014 €630 00300 ADD A, 30H {CONVERT TO ASCII
8016 DDT700 00310 LD (IX+0),4 :STORE IN BUFFER
8019 DD23 00320 e IX :BUMP BUF POINTER
801E FD23 00330 isc Iy ;BUMP PWR 10 PNTR :
8010 FD23 00335 INC IY -
B0O1F 7B 00340 LD AL,E {GET LS BYTE [
8020 FEO1 00350 cP 1 {TEST FOR 5 DIGITS 4,
8022 20E0 00360 JR NZ,BINO10 ;GO IF NOT 5 A
8024 c9 00370 RET ;RETURN
8025 1027 00380 PTABLE DEFW 10000 s
8027 EB03 00390 DEFH 1000 :
8029 6400 00400 DEFY 100
8025 0400 00410 DEFW 10 iy
802D 0100 00420 DEFW 1 iy
0000 00430 END

00000 TOTAL ERRORS

Figure 7-14. Binary-to-Decimal
Routine

156 b5




NUMBER: 12345
—10000

2345
—-10000

— XXXXX
+10000

2345
-1000

1345
—1000

345

—1000

—XXXX

+1000

345
~100

245

-100

145

-100

45
-100

-X
i
)

POWER OF 10
1000 100 10 1

10000

once

twice

once
twice

three

once
twice
three

four

Figure.7-15. “Powers of Ten” 157

Binary to Decimal..



This subroutine converts a 16-bit binary number into 5 f
ASCII digits and returns a pointer to the last digit plus one. 5

There are no error conditions for conversion of the 16-bit Ry
value.

Hints and Kinks 7-7 4

Converting Between ASCII and Binary or Hex **"

Converting from an ASCII stiring of characters f

representing binary or hexadecimal digits or _3

the other way around isn't done as frequently ,
as decimal /ASCII conversion. However, each
conversion is relatively easy, since no wid
multiplication must be done; the process
simply involves stripping off one or four bits anig
and translating them one at a time to ASCII, e
or vice versa. "

To convert from ASCII to binary. get the ASCII e
character and subtract 30H. You now have a
binary one or zero. Shift to the next bit
position and repeat the process for the number
of characters in the string.

To convert from binary to ASCII, get the next
bit and add 30H. You now have an ASCII O or 1. ~
Store in the output buffer and go on to the v 4
next bit. b,

To convert from ASCII to hexadecimal, do this: il
Get the next ASCII character. This will be T
30H-39H, or 41H(A)—-46H(F). Subtract 30H. If e
the result is greater than 9, subtract 7 {this [
adjusts for the ASCII characters between 9 and
0). You now have a hex 0 through F. Store in
the next 4 bits and repeat the process for the
next ASCII character.

To convert from hexadecimal to ASCII: Get the
next group of four bits. Add 30H. If the

result is greater than 39H, add 7. You now 5
have an ASCII 0 through 9. A, B. C, D, Eor F. ;
Store in the buffer, and go on to the next R
group of four bits. L

158 e



Chapter Eight
Working With Tables

Tables are some of the most common data structures
used in assembly-language programming. Tables are so
common that large programs that use many tables to
define program operations are said to be table driven as
opposed to more “processing-oriented.” We’ll discuss types
of tables followed by some searching and sorting
operations that can be performed in assembly language.

What are Tables?

A loose definition of a table is any collection of data items
arranged in one contiguous block of memory. The data
items may be ordered by some key value or unordered.
Each entry in a table may consist of one or more bytes.
The entry may contain a number of fields that are associ-
ated with the entry, or there may only be one field or item.
The entry itself may be fixed length or variable length,
and the table may also be either fixed or variable length.

Fixed Length Entry/Fixed Length Table

Let’s take a look at a typical simple table. The MOVETB
from Chapter 15 is a five-entry fixed-length table; it’s
shown in Figure 8-1. Each entry is two bytes long, making
the total table length 10 bytes. Each entry of the MOVETB
is an address defining the location of a “space cell” in a
tic-tac-toe game (see Chapter 15).

159



MOVE TB+0 ADDRESS FOR L
+1 T MOVE1
+2 ADDRESS FOR
+3 T MOVE2 T
+4 ADDRESS FOR
+5 T MOVE3 T
+6 | ADDRESS FOR L
7 MOVE 4
+8 L ALWAYS L

0

+9

Figure 8-1. Fixed-Length Entry/
Fixed-Length Table

The entries in MOVETB are indexed by the-move number
of the tic-tac-toe game. The (computer) moves are
numbered 1 through 4, so to get the address associated
with any move, the formula is

MOVETB ENTRY ADDRESE =
MOVETB + Z#(MOVE # -1)

Typical code for accessing the table is shown in Figure 8-2
from the MAIN3 subroutine of Chapter 15. Here, A is loaded
with the move number, MOVENO. This is decremented by
one to find the previous move number and then multiplied
by two. This index value is then loaded into the BC
register pair. IX is then loaded with the address of the
table start MOVETB, and BC is added to IX. IX now points to
the MOVETB entry for the previous move. The address in
the entry is picked up in HL by two LD instructions that
use the index register.

160




djqet sjdwig e buissasoy ‘z-g ainBi4

ANIT oy32zE

ogsz!t

3ixg ST*

FLXE SWE

$SIHAAY XNIT OF INIO4S
FTGVL FAOH S

28 KI KON

3 NI HON®

2aXZANI ¢

XEANT FAOW IS¥T QRISS
& FAOR runf

TECIINOD GV XNIT SOOTABMd ONIOHIZ X9 XUINZT ¢
STHL ZAOHSE "0 F4Y KYLIN¥ SIHL 30 STTID FOVdS TI¥ ¢

¥ (TH) az

v HOX
(E+XI)“1 aT
(XT)*H a1

o8 ‘X1 aay
GLEAOR ‘XTI a1
o'g a1

¥a a1

v3TH

¥ oaq
(ONTAOR) ‘¥ a1

09€L0
[334 3]
oRELD
0ELtLo
oz2Eio
OLELOD
coElLo
0620
0gcLo
OLZEO
ogzLa
oseLo
L £4 843

to 39

00 99

60

#0000 t2
o0

G000

LL
3y
aq
aa
aaq
aa
96
it
Lo
at
¥E

+¥000
6200
19200
«£200
+ 1200
1 QG000
+GH00
1¥E00
s 6800
18800
15800

y

five entries were not arranged in numerical sequence) but
related them to an external index and accessed them b

Here we didn't order the data in the table (namely, the
that index value.

161




Fixed Length Entry/
Variable Length Table

Another table that illustrates what we mean by “table
driven” is shown in Figure 8-3. The GRIDTB of the figure is L
used in Chapter 15 to define a tic-tac-toe grid. There are
16 entries in the table, each one defining a line segment to . J
be drawn by the DRAWL subroutine of that chapter. Each L
entry consists of five bytes and there are four fields within

each entry. £l

GRIDTB+0 3 it
+5 kB |
+10 !
+15 R
+20
+25 ‘
+30 4
+35 S Each &
+40 )
+45
+50 w
+55 '
+60
+65 v
+70
+75 J g
+86 —1 TERMINATOR = —1 &

Figure 8-3. Fixed-Length Entry/
Variable-Length Table

The first, second, and third fields of the entry are each one
byte long, and the fourth field is two bytes long as shown
in Figure 8-4. (The first field defines the graphics charac- o
ter to be stored; the second is 0 for a horizontal line or 1 for LI
a vertical line; the third represents the number of charac- o

ter positions in the line; and the fourth field is the starting Wy
screen address for the line.) E
162



+0 | GRAPHICS CHARACTER
1 0 =HORIZ 1=VERT
+2 #CHARACTER POS’NS

+3 STARTING
+4 SCREEN ADDRESS

Figure 8-4. Entry Fields in GRIDTB

The last byte of the table is a terminator of -1. The termi-
nator marks the end of the table and may be any value
that is not a legitimate value for an entry in the table.
You use the table by setting a pointer to the beginning
and picking up the five bytes of each entry. After you have
drawn the line, you increment the pointer by 5 and the
code loops back to pick up the next entry. This continues
until the -1 terminator is found. The code for accessing
this table is shown in Figure 8-5.

00350 1 DRAW GRID HERE

0014 DD 21 0000* 00360 LD IX,GRIDTB ;TABLE FOR GRID

0018* Db TE 00 00370 ART005: LD A {IX) sGET CHARACTER

001B" FE FF 00380 j3 OFFH ; TEST FOR TERMINATOR
001D? 28 16 00390 JR Z.ARTO0O8 GO IF DONE

GO1F* DD 4E 01 00400 LD C,{(IX+1) sLOAD HORIZ/VERT
goz2* DD 46 02 go410 LD B, {(IX+2) ;LOAD # OF CHAR POSNS
G025* DD 6E 03 00420 LD L,(IX+3) iSTART OF LINE, LSB
0g28" DD 66 04 00430 LD H,(IX+4) $START OF LINE, MSB
002B* CD 00QO*% oob4Q CALL DRAWL :DRAW LINE

002E* 01 0005 00450 LD BC,5 5 BYTES PER LINE
0031 Db 09 00460 ADD IX,BC $POINT TO NEXT LINE
0033" 18 E3 00470 JR ARTOO05 ;G0 FOR NEXT LINE

Figure 8-5. Table Use With Terminator

This somewhat “sloppy” table groups similar data together
and helps “modularize” code. We could have incorporated
all of the code to draw the grid into in-line code, but it’s a
lot neater and efficient to put it into a table such as
GRIDTB.

163



~ Variable Length Entry/
Variable Length Table

The tables above had fixed-length entries. In the case of
MOVETB, the number of entries was fixed at five. GRIDTB
had a variable number of entries, the end of the table
being denoted by a terminator of -1.

An example of a table consisting of variable-length
entries with a variable number of entries is shown in
Figure 8-6. The PTABLE, or Permutation Table, is used in
Chapter 15 to hold configurations of tic-tac-toe games.

PTABLE ENTRY 0
TYPICAL
/,{ 5 ( ENTRY
VARYING 2
LENaTHs Y { - CONFIGURATION -+
3 # OF SPACES
7 1ST SPACE
- 2ND SPACE
3RD SPACE
4TH SPACE
5TH SPACE
6TH SPACE
— J 7TH SPACE
/W/

Figure 8-6. Variable-Length Entry/
Variable-Length Table

164




The configuration for each tic-tac-toe game is held in the
first two bytes of each entry in a special binary-coded
form. The next byte defines the number of “spaces” in the
tic-tac-toe configuration, from 3 to 9. The next 3 to 9 bytes
represent a count related to each space. The length of each
entry is therefore 2+1+N where N is 3 to 9 or 6 to 12 bytes.
When a search is made of the PTABLE, the length of the
current entry must be computed by adding 3 plus the
number found in the third byte.

PTABLE also has a variable number of entries, as the num-
ber of possible tic-tac-toe permutations is calculated
dynamically (during program execution) by the
tic-tac-toe program. In this case there is no terminator
since a search of the PTABLE for a specific configuration
must be successful. You don’t have to have a terminator
because the program will have a severe logic error if an
entry is not found. The only action an unsuccessful search
might produce would be a print-out message: FINISH
DEBUGGING THE PROGRAM!!

Jump Tables

Another common type of table is a “jump table” or “branch
table.” This type of table is shown in Figure 8-7 in code
from the MORG program of Chapter 14. It is used in similar
fashion to a BASIC “computed GOTO” (ON N GOTO 100, 200,
300. . .). Its entries define the addresses of processing
routines for the program where there are many different
types of processing to be performed.

165



80BE
80BF
80cCo
gocCt
8ocC2
80cC3
gacu
80Cs
80cé
80CT
8ocC8
80cC9
80cCA
80CB
8occC
000F

80CD
80CF
80D1
80D3
80D5
80DT7
80D9
80DB
80DD
80DF
80E1
80E3
BOES
80ET7
BOE9

The index of the processing routine is determined by find-
ing an entry in another table, which typically holds a set

ch
b3
b2
BO
B1
B2
B3
BY
B5
B6
BT
B8
B9
Do
CE

EB80
9181
F081
3782
3782
3782
3782
3782
3782
3782
3782
3782
3782
8882
B182

01130

01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01500
01410
01420
01430
01440
01450
01460
01470
01480
01490

; FUNCTION TABLE

z

FTAB DEFB *D'+80H
DEFB '*S'+80H
DEFB '"R'+80H
DEFB T0'+80H
DEFB *1°+80H
DEFB *2'+80H
DEFB *31+80H
DEFB "4 14+80H
DEFB 51+ 80H
DEFB "6+ 80H
DEFB 7'+ 80H
DEFB *8'+80H
DEFB 'g1+80H
DEFB 'P'+80H
DEFB 'N'+80H

FTABS EQU $-FTAB

; BRANCH TABLE

BTAB DEFW DEFINE
DEFW SPEED
DEFH RANDOM
DEFU XMIT
DEFW IMIT
DEFW XMIT
DEFW XMIT
DEFW XMIT
DEFW IMIT
DEFW XMIT
DEFW XMIT
DEFW XMIT
DEFW AMIT
DEFW PRINT
DEEY. NOPRNT

15 ONE-BYTE ENTRIES
IN FTAB

;DEFINE MESSAGE
{DEFINE SPEED

s TRANSMIT RANDOM
s TRANSMIT MESSAGE

iSET PRINT
:RESET PRINT
1SIZE OF FUNCTION

;DEFINE MESSAGE
;DEFINE SPEED

;s TRANSMIT RANDOM
; TRANSMIT MESSAGE

$SET PRINT
sRESET PRINT

15 TWO-BYTE ENTRIES
IN BTAB. POSITION OF

EACH CORRESPONDS TO

FTAB ENTRY

Figure 8-7. Jump Table

of one-character function codes.

In the code, FTAB holds all of the possible input characters
that define special functions in the MORG program. The
80H represents a SHIFT. When the user inputs a SHIFT D,
for example, processing of the Define Message must take
place; when a SHIFT 8 is input, message 8 must be trans-

mitted.

166

TABLE

OO U B W R - O

4{@@

2~




The FTAB is first scanned for the input code character. If
it’s found, the index to FTAB is then used to get the branch
address from the BTAB. The code for the scan is shown in

Figure 8-8.

SETUP AND SCAN

FTAB FOR INPUT CODE

CHARACTER
807D BO 00820 NORQ22 OR B +MERGE SHIFT BIT
BOTE 21CC80 00830 LD HL ,FTAB+FTABS~1 ;FUNCTION TABLE END ADD
8081 060F 00840 LD B,FTABS ;FUNCTION TABLE SIZE
8083 BE 00850 MORO25 CP {HL) ;TEST FOR FUNCTION
8084 2825 00860 JR 2 ,MOR030 ;GO IF FOUND
8086 2B 00870 BEC HL ;POINT TO NEXT FUNCTION
8087 10Fa 00880 DJINZ MOR0O25 ;CONTINUE
8089 E6TF 00830 AND TFH sRESET BIT 7

00900 ; NOT FUNCTION HERE - TRANSMIT A SINGLE CHARACTER

808B 32DC85 00910 LD (TMP1),4 {STORE IN TEMP BUFFER
808E 3EFF 00920 LD A,OFFH ;=1
8090 32DDBSs 00930 LD {TMP1+1),4 ;STORE TERMINATOR
8093 21DC8s 009490 LD HL,TMP1 ;ADDRESS OF "MESSAGE™®
8096 7E 00950 MORQ27 LD A, {HL) sGET NEXT CHARACTER
8097 FE20 00960 CPp v ;TEST FOR NON-ASCII
8099 FA6480 00970 JP M,MOR020 ;GO IF END OF MESSAGE
809C CDBES3 00980 CALL DISCHR ;DISPLAY CHARACTER
809F CD8183 00990 CALL LPRINT s PRINT IF REQUIRED
80A2 CDE082 01000 CALL SNDCHR ;SEND CHARACTER
B0AS 23 01010 INC HL :POINT TO NEXT
804A6 CD2984 01020 CALL INPUT ;s TEST FOR INPUT
80A9 1BEB 01030 JR MORO27 ;CONTINUE SENDING
BOAB 48 01040 {MORO30 LD c,B ;INDEX+1 NOW IN C
80AC OD 01050 DEC C ;ADJUST FOR INDEX
80AD 0600 01060 LD B,0 ; INDEX NOW IN BC
BOAF CB21 01070 SLA C :2®INDEX NOW IN BC
80B1 DD21CDBO 01080 LD IX.,BTAB {BRANCH TABLE
80B5 DDO9 01090 ADD IX,BC ; POINT TO BRANCH
80B7 DD6601 01100 LD B, {(IX+1) ;GET MSB OF ADDRESS
80BA DD6EOO g1110 LD L. {IX) sGET LSB OF ADDRESS
80BD Eg 01120 JP (HL} ;BRANCH OQUT

\

CONVERT FTAB INDEX
TO BTAB INDEX, GET
ADDRESS AND BRANCH
ouTt

Figure 8-8. Jump Table Use

At MOR025 , A holds the input character, and B holds the
FTAB size, FTABS. FTABS is automatically computed at
assembly time. The HL register holds a pointer to the end
of the FTAB, set up by loading HL with FTAB+FTABS-1.

167



Hints and Kinks 8-1
Automatic Table Size

Programmers commonly use an expression like
FTABS EQU $-FTAB to have the assembler
calculate table size. Entries can then be
added in the table without having to change
program constants. FTABS will be stored in the
assembler symbol table with a value equal to
the number of bytes in the table. As symbol
table entries are 16 bits. this method works
even for very long tables.

A CP is done to search the table. If the entry in FTAB does
not compare, HL is decremented to point to the next lower
entry. A DINZ is then done back to MOR025. If the contents
of B have been decremented down to zero, all entries have
been compared and the search is unsuccessful. If the entry
is found, the instruction at location MOR030 is executed.

At MOR030, the B register contains an index value to the
FTAB character of 0 through 15 (FTABS). This index is
transferred to BC, and then multiplied by two (SLA C). The
IX register is now loaded with the start of BTAB, and BC is
added to IX to point to the entry in BTAB corresponding to
the FTAB entry. Note at this point, that IX only points to
the BTAB entry; we have not picked up any address.

The next two instructions load H with the most significant
byte of the entry and load L with the least significant byte
of the entry. HL now contains the address of the processing
routine from BTAB and a JP (HL) causes a jump out to the
processing routine.

Using a branch table in this fashion is much cleaner than
doing the equivalent in-line code of —

CP 'D'+B0OH 3STEST FOR DEFINE
JB Z,DEFINE 3GO IF DEFINE

CP ‘S5‘+80H STEST FOR SPEED

168

e




JP ZSPEED i1GO IF SPEED

+

Hints and Kinks 8-2
When to Use Branch Tables

Admittedly, there's a lot of '‘‘overhead''’ in
branch table processing. One major difficulty
is picking up a branch address. It would be
nice to be able to use indexed addressing to
pick up a 16-bit value instead of picking up
the value one byte at a time.

Let's analyze the approach here. One way to
branch out would have been

CP 'D’+80H 3§IS8 THIS DEFINE MESSAGE
JP  ZJ+DEFINE 3GO IF YES

CP ’5'+BOH IS THIS DEFINE SPEED
JP Z,8PEED iGO IF YES

This approach is clean and simple to debug.
You would have used five bytes for each
branch. The code shown in Figure 8-8 uses
about 75 bytes, counting table storage. In
this one example, then, 15 branch points would
have been the '‘break even'' point in terms of
memory storage. Of course, there's also the
factors of difficulty of coding and debugging,
but it seems reasonable to use branch tables
for anything over 20 or so entries. (Or 15 or
so if you're writing a book on assembly
language.).

Scanning

In the code above, we searched or scanned the FTAB for the
key value. In this particular case, we scanned
backwards. The usual procedure is to scan forwards
through the table. The code of Figure 8-9 is a “Find
Message” subroutine that searches a table of messages for

169



a given message number. The format of the Message Table
MTAB is shown in Figure 8-10. It consists of ASCII
characters, message numbers of 0 through 9, or -1
terminator values.

03680 ;%e08essGRNERGOEBEINFNDMSG SUBROUTINE##easssnsdsasanssans

03690 ;*® FINDS MESSAGE BY SCANNING MBUF FOR 0-9. 0-9 IS hd
03700 :® MESSAGE #. ASCII CHARACTERS ARE CHARACTERS TO 8
03710 ;°® BE SENT. -1 IS PADDING AT END OF MESSAGE. #
03720 : % ENTRY: (A)=MESSAGE # e
03730 ;*® EXIT: (HL)=POINTER TO MESSAGE IF Z OR #
03740 ;® POINTER TO NEXT AVAILABLE IF NZ ®
03750 % RESET #
03760 :* ALL REGISTERS SAVED EXCEPT HL »
03770 3

82C7 €5 03780 §jFNDMSG PUSH BC iSAVE BC

82C8 CbD782 03790 CALL FNDSR {SEARCH

82CB 2807 03800 JR Z,FNDO20O ;G0 IF FOUND

82CD F5 03810 APUSH AF ;SAVE NOT FND FLAG

82CE 3EFF 03820' ILD A,OFFH yFOR FIRST AVAILABLE

82D0 CPDT782 03830 CALL FNDSR ;SEARCH

82D3 F1 03840 POP AF A 3GET FLAG

82py ¢ 03850 FNDO20f POP BC ;RESTORE BC

82p5 2B 03860 DEC HL ;ADJUST HL

82D6 C9 03870 RET s RETURN

82D7 21EA88 03880 FNDSR LD HL,MBUF ;START OF MSG BUFFER

82DA 010B0OA 03890 LD BC,2571 1SIZE OF MBUF

82DD EDB1 03900 CPIR ; COMPARE

82DF C9 03910 RET s RETURN

LOOK FOR GIVEN MESSAGE #
GIVEN MESSAGE # NOT FOUND, LOOK

FOR NEXT AVAILABLE

Figure 8-9. Scanning Example

MTAB +0 5 h
+1 ™M
+2 E
+3 S
S \ MESSAGE #5
A “MESSAGE"
G
E /
g h
T
R
S > MESSAGE #0
- “TRS-80"
8
g o
q.
+2569 -1 e
+2570 1 AMINATOR

Figure 8-10. MTAB Format
170




You do the scan by a “block compare” instruction that
compares the contents of A (the message #) with each byte
of the table starting with MBUF and continuing through
2571 bytes. If the entry in MBUF compares, the Z flag is
set, and HL points to the entry plus one.

Hints and Kinks 8-3
Block Compares

The setup for a block compare looks like this:

(HL) = Start of data for compare
{BC) = Number of bytes in comparison area
(A) = Search value

You then execute a CPIR instruction. It'll go
through the block of memory for the number of
bytes specified in BC and compare each memory
byte with the search value. If a match is
found, CPIR will stop with the Z flag set. and
HL pointing one byte past the matching value.
(The reason for this is that the increment of

HL is done before the comparison.} If the
search value is not found in the memory block,
the Z flag will not be set after the CPIR, and
HL will point to the last byte plus one.

The CPDR performs much the same action but
searches the block backwards. The CPI and CPD
perform one comparison at a time, requiring a
loop to be made back to the CPI or CPD.

The first part of the code looks for the given message
number. If it isn’t found (NZ), another CALL is made to
FNDSR to search for the first -1 terminator. On exit, HL
points to the message number if found or the first -1 byte.
The Z flag is set if the message number was found.

The block compare instructions may be used conveniently
to search a table of one-byte entries forwards or backwards
(CPDR). They’re very fast in comparison to other code
sequences.

171



Ordered Tables

All of the above examples involved tables of unordered
data. Scanning forwards or backwards through the table
located one entry, an item at a time, until a match was
found, or until the end (or beginning) of the table was
reached. In the following discussion, we’ll be concerned
with operations on ordered tables.

Hints and Kinks 8-4
Ordered Tables

Tables are usually ordered in ascending order
based on numeric ‘‘weight.'' One~byte

entries pose no problem. Two-byte entry tables
for numeric values will probably be in
standard Z-80 16-bit address format, least
significant byte followed by most significant
byte. Greater than two~byte entries are not
often found for numeric tables, but are common
for strings.

ASCII strings in tables are also usually
ordered on the basis of numeric weight. This
means that you will use the hex equivalent of
the ASCII value in determining whether one
value is smaller than the next. This puts
upper—case characters before lower case
{TRS—-80 before tRS-80, for example and
BIV,ROY G. after BIVROY G) .

The techniques for ordered tables (data entries are in
ascending or descending order) are geared towards fast
searches to find specific data items and sorts to organize
the data in orderly fashion.

172




Searching

Suppose that we have a table of ordered data. We'll
assume the table is made up of fixed-length entries, and
it’s a fixed number of entries. How do we search the
entries in the table?

Sequential Search

The first way, of course, would be to scan the table
sequentially as we have been doing. Even though assem-
bly language is fast, the search time for a sequential
search may become quite significant when large amounts
of data are to be processed. We might be using the
sequential search for a sort, for example. The entries in a
table would be consecutively searched for the next
smallest item and put into a second, sorted table. If there
were 1000 entries, we'd have to search all 1000 to find the
next smallest item, and we’d have to do that for 1000
items. This would mean 1000%1000 iterations, or about
1,000,000 iterations. If each iteration took 70 microseconds
(about 12 instruction times), the total sort time would be
70 microseconds * 1,000,000, or 70 seconds! Although this
is the blink of an eye compared to the equivalent BASIC
code, there is an occasional need for fast searches of
ordered data. One of the “standard” high-speed search
methods is the binary search.

Binary Search

In this search, the midpoint of the entries is compared to
the search key. If the entry is greater than the search
key, the top half of the table is discarded and the next
comparison is made in the midpoint of the bottom half; if
the entry is less than the sort key, the bottom half of the
table is discarded and the next comparison is made in the
midpoint of the top half. This division by 2 continues for
smaller and smaller segments of the table until the entry
is found or until the last segment (one entry!) has been
compared and no match has been made (see Figure 8-11).

173



[15] seaRCH KeY o

by
&
SORTED e
TABLE
TRY1 TRY2 TRY3 TRY4 i
E : ,““
1
1
2
3 L
4 d
5 ¥
6
7 |
8 8<15 |
.4
u it
10 g R
11 z ;
12 o 12<15 o
@ w .\
13 E g ";‘:‘
14<15
14 z é 4 :'
15 w 15=15
16 & % i
= = x

Figure 8-11. Binary Search Algorithm

Figure 8-12 shows this binary search technique imple- J
mented in an assembly-language program. BINSRC is
designed to search a table made up of 16-bit entries for a ;
given search value. The entries are ordered in ascending

fashion and are in standard Z-80 16-bit format, least sig- v
nificant byte followed by most significant byte. LA
"
8000 00100 ORG 8000H ;
c0110 ;Iﬂilﬂﬁiﬂll‘ilﬂ‘}}iiG‘!il'l'!i‘ll!l!“ll!lil‘liiiﬁﬂilliii‘l
00120 ;& BINARY SEARCH OF 16-BIT ENTRY TABLE ' g
00130 ;® ENTRY: (DE)=# OF ENTRIES # ‘v;
00140 ;*® {BC)=SEARCH VALUE # ‘
00150 ;# (HL)=START OF TABLE # E
00160 ;® EXIT: (HL)=ENTRY LOCATION OR -1 IF NOT FOUND ®
00170 : % ALL OTHER REGISTERS SAVE #
00]80 ’!Qi‘l.‘lll§.§ﬂilllIl'll“Iil‘il!‘!ll‘lii"ili“*ll}i‘liiil!
8000 F5 00190 BINSRC PUSH AF ;SAVE REGISTERS
8001 D5 00200 PUSH DE
8002 DDES 00210 PUSH IX
8004 226680 00220 LD {START),HBL 1SAVE TABLE START :
8007 EDS35E80 00230 LD {HI),DE sHIGH VALUE “
800B 110000 00240 LD DE,OQ 1 ZERO
80GE ED536080 00250 LD (L0},DE ;LOW VALUE
174
5



8012 ED5B6080 00260 BING10 LD DE,(LO) ;GET LOW VALUE

8016 2A5ES80 00270 LD HL,(HI) sGET HIGH VALUE
8019 B7Y 00280 OR A sCLEAR CARRY
8014 ED52 002940 SBC HL,DE ;FIND HIGH-LOW
801C CB3C 0030¢C SRL H M5B/ 2

801E CB1D 0031¢ RR L ;(HI-LOW}/2

8020 226480 0032¢ LD (IKCHM)  HL $SAVE INCREMENT/2Z
8023 19 00330 ADD HL,DE ;LO+1/2INC

§o24 226280 00340 LD (MID},HL ;SAVE MIDPOINT
8027 29 00350 ADD HL,HL ;HMID®*2 FOR WORD ADDRESS
8028 EDS5B6680 00360 LD DE, (START} ;START OF TABLE
8oac 19 00370 ADD HL,DE $START + MIDPOINT ADD
802D ES 00380 PUSH HL ;PUT IN IX

802E DDE1 00390 POP IX

8030 DD6601? 00400 LD H,(IX+1) tGET MSB BYTE
8033 DDGEQOO 00410 LD L, (1X) iGET LS BYTE

8036 BT 00420 CR A ;CLEAR CARRY

8037 ED42 00430 SBC HL,BC ;TEST VALUE

8039 246280 00440 LD HL,(MID) ;SETUP FOR STORE
803C 2813 00450 JR Z,BINO3O ;GO IF FOUND
803E 300C 0060 JR NC,BINO20 ;GO IF LOVW

8040 226080 o470 LD (LOJ ,HL sNEW LOW

8043 246480 00480 BINO15 LD HL, (INCH) JGET INCREMENT
8046 7C 00490 LD A,H ;0 FOR SMALLEST TEST
8047 BS 00500 OR L ;CLEAR CARRY
8048 280F 00520 JR Z,BINCHO ;GO IF END

8044 18Ch 00530 JR BINC10 ;Loop

8o4c 225E80 00540 BIND20 LD (HI), HL iNEW HIGH

804F 18F2 00550 JR BINO15 ;Loop

8051 DDES 00560 BINO30 PUSH IX ;ADDRESS

8053 E1 00570 POP HL ;FOR RETURN

8054 DDE1 00580 BINO35 POP IX sRESTORE REGISTERS
8056 D1 00590 POP DE

8057 F1 00600 POP AP

8058 €9 00610 RET ;RETURN

8059 21FFFF 00620 BINO4C LD HL, -1 ;DUMMY FOR NOT FOUND
805C 18F6 00630 JR BINO35 ;GO TO RETURN

0002 00640 HI DEFS 2

0002 00650 LO DEFS3 2

0002 00660 MID DEFS 2

0002 00670 INCM DEF3 2

0002 00680 START DEFS 2

0000 00690 END

00000 TOTAL ERRORS

Figure 8-12. Binary Search Routine

The routine is entered with DE holding the number of
entries in the table, BC holding the 16-bit search value,
and HL pointing to the table start. A binary search will be
made of the table. If the value in BC is found, HL is
returned with a pointer to the table entry. If there is no
corresponding table entry, HL is returned with a “not
found” value of -1.

Data in this table must be 16-bit unsigned values. All
compares will be of unsigned data (8000H is greater than
7FFFH and FFFFH is greater than FFFEH, for example).

175



BINSRC works as follows. Five variables are used — HI, LO,
MID, INCM, and START. START is simply the table start from
entry. HI holds the current high index value defining the
top of the range. LO holds the low index value. MID holds
(HI-LO)/2 + LO, which points to the next “test” value in the
middle of the range. INCM is (HI-LO)2. INCM gets smaller
and smaller as the search “zeroes in” on a value.

The routine starts with HI equal to the number of entries
and LO equal to 0. For each iteration, HI-LO is found,
divided by two, and added to LO. This gives the index
value for the comparison. This value is multiplied by two
and added to START to find the actual table address.

After the address is found, the table entry is compared to
the BC search value. If the table value is less, the MIDpoint
value replaces LO; if the table value is more, the MIDpoint
value replaces HI. Either way, one half of the current
range is discarded.

The “halving” process continues until the search value is
found (BIN030) or until the increment INCM is zero,
indicating that HI-LO=1." (The test is made after the
comparison.)

With the proper parameter passing setup, BINSRC could be
used to search a BASIC integer array, as the array would
be made up of 16-bit values. Use VARPTR to find the array
address.

There are other types of searches, but the binary search
and sequential searches are the most commonly used in
assembly language. Many searches use the sequential
scan since it’s the easiest to implement.

176




Sorting

Now the question arises, “How did the data in a table get
sorted in the first place?” There are a number of ways you
can sort data — the brute-force two-buffer sort, bubble
sorts, binary-insertion sorts, the Shell-Metzner sort, and
many others. We'll discuss the first two, which should
handle most assembly-language applications.

The Brute-Force Two-Buffer Sort

In this sort we require two buffers. The second is the same
size as the first. Here you scan the first “buffer,” which is
the table of items to be sorted, sequentially for the
smallest data item. When it’s found, it’s put into the
second buffer in the next position. The item is then
“blanked out” in the first buffer.

This sort requires a lot of memory space because of the two
buffers and is relatively slow because of the complete scan
required for every item. On the other hand, it’s simple in
concept and easy to debug.

The assembly-language subroutine for the sort is shown in
Figure 8-13. Here again, the sort works with 16-bit data
values. Why 16 bits? The 8-bit case is virtually useless,
and a version that handles long strings is much more
complicated. The 16-bit version is complicated enough due
to 16-bit comparisons that must be done and other un-
wieldy 16-bit operations.

177



8000

8000
8004
8008
goocC
800F
8012
8015
8018
8o1ic
801F
8o22
8023
8oau
8026
8024
802B
go2p
802F
8030
8033
8037
8039
8038
803¢C
803D
803E
8040
8043
8ouy
8ogs
8oh6
80u7
8049
8044
804B
8ouc
804 F
8052
8055
8057
8059
0002
0002
0002
0002
[11a]a2¢]

DD225B80
ED535D80
DD2ASB8O
210000
226180
21FFFF
225F80
ED5B5D80
DD66O1T
DD6EOO
TC

BS

2811
EDA4BSF80
BY

ED42
3008

09
225F80
Dp226 180
DD23
DD23

1B

TA

B3

20DC
246180
TC

B5

c8

AF

3E00

77

23

77
2A5F80
FDT401
FD7500
FD23
FD23
18AD

00100
00110

00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
0g220
00230
Q0240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00330
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00505
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650

00000 TOTAL ERRORS

178

ORG 8000H
RSN GO E NI NN GN DR G R RE U BN AN F NI AR AR DN NRROER RN
TWO BUFFER SORT OF 16~ '1T ENTRIES

&

1% ENTRY:
s B

= 8

3
;% EXIT:
H

1% NOTE:

BU
DE

(IX)=BUFFER {1 ADDRESS
(IY)=BUFFER 2 ADDRESS
(DE)=NUMBER OF ENTRIES

FFER1 ENTRIES SORTED IN BUFFER2. BUFFER1

STROYED

ENTRIES OF 0 ARE NOT ALLOWED

ALL REGISTERS ®DESTROYED®

ISR SRS ERERSRRR SRS SRR ERE R

H

TWOBUF

TWBOO5

TWBO10Q

TWBO30

BUF1
COUNT
CURVAL
CURLOC

Figure 8-13. Two-Buffer

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
OR
JR
LD
OR
SBC
JR
ADD
LD
LD
INC
INC
DEC
LD
OR
JR
LD
LD
OR
RET
XOR
LD
LD
INC
Lp
LD
LD
LD
INC
INC
JR
DEFS
DEFS
DEFS
DEFS
END

{BUF1),IX
(COUNT),DE
I1X,(BUF1)
HL,0
(CURLOC),HL
HL,OFFFFH
(CURVAL) HL
DE, (COUNT)
H,(IX+1}
L,{1X}

A H

L

Z,TWBO30
BC,(CURVAL)
A

HL,BC
NC,TWB0O30
HL,BC
{CURVAL) ,HL
{CURLOC),1X
IX

IX

DE

a,D

E

NZ,TWBO10
HL,(CURLOC)
ALH

L

Z

A

A,0

(HL) . A

HL

(HL) A

HL, (CURVAL)
(IY+1),H
(IY),L

Sort Routine

The routine is entered with IX and IY pointing to the two
buffers. IX points to the buffer containing the unsorted
data; IY points to a second buffer holding the sorted data.
As the entries in the IX buffer are moved to the IY buffer,

$SAVE START
$SAVE COUNT

:LOAD START
{ZERO
sCURRENT LOCATIOHN
;FOR SMALLEST
s CURRENT VALUE
3GET COUNT
;GET MSB
;GET LSB
;TEST FOR 0 ENTRY

GO IF ZERO

3GET CURRENT VALUE
1CLEAR CARRY

;s COMPARE

;GO IF CURRENT LARGE
RESTORE NEW VALUE
yNEW SMALLEST

sNEW LOCATION

$POINT TO NEXT

;:DECREMENT COUNT
;TEST FOR ZERO

;GO IF NOT END
;GET CURRENT LOCATION
;TEST FOR O

$RETURN IF ALL BLANKED
JZERO TO A

i0 TO A, DON'T SET CARRY

sBLANK ENTRY

$GET CURRENT VALUE
;STORE MSB
;STORE LSB
;BUMP BUFFER2 PNTR

s CONTINUE

@
#
2
i
#
&
L]
]
@

R




they are “blanked” by filling with a zero value. For this
reason, zero is not a valid value in the IX buffer, unless
you’d like it to be ignored.

DE contains the number of entries in each of the buffers.
The routine first scans the IX buffer until it finds the
smallest entry. A dummy count of OFFFFH is initially put
in variable CURVAL to guarantee that a smaller entry will
be found. Each entry in the IX buffer is compared with the
smallest entry. At the end of the scan, the smallest entry
is in CURVAL and its address is in CURLOC. The entry is
now blanked by filling its position with 0000H. The entry is
then stored in the next position in the IY buffer. The
process is repeated until all entries in the IX buffer have
been blanked. Figure 8-14 shows the sort action.

“BLANKED
our"
ENTRIES

N

{(1X) ;zf)/ \ BUF1+0 (IY) - | BUF2+0
1008 ‘ +2 17 +2
1850 / +4 19 +4

2/

§r

i\
(o

hY)!
A)

17
512
333 +N-2 +N-2
222 +N +N
i ENTRIES AT COMPLETION
Figure 8-14. Two-Buffer Sort

Action
179



Hints and Kinks 8-5
Two-Buffer Sort Speed and Storage

The two-buffer sort is very expensive in terms
of memory storage since it must use another
buffer the same size as the first to do its
dirty work. How fast is it? Because the sort
must pass completely through the first buffer
for each entry, it requires n passes to sort,
where n is the number of entries. Each
iteration requires approximately 35
instructions. If we estimate about 5
microseconds per instruction, that means each
pass takes about 175 microseconds. For a
thousand entry table, this is a little under a
fifth of a second. Quite a difference from
BASIC — we can afford to be ''sloppy'' in
high-speed code such as this. Nevertheless,
many sorts are run ''off-line'' in commercial
programming departments during hours when only
the maintenance crew is around.

The Bubble Sort

The “bubble” sort is another sorting technique. It uses
only one buffer and is therefore efficient in memory
storage. The bubble sort works with two entries of the
table at a time. It switches the entries if the second entry
is of lower value than the first. In this way, the “lighter”
entries bubble to the top. After each pass through the
table, another pass is made. If no switches have occurred
after any pass, the sort is done (See Figure 8-15).

180



UNSORTED

| [ [ (] T [ (A [ A [a) [a] 4] [
2| |aqy 3| |3f |s) 3| |s] |a] 3] |3] |3] 3|3
3| |12f |12| [12] |12] |12 |i2| |12| |12 [12| |i2| |12] |12
@ || |spis| |s||s| |s||s||s| s |s||s||s
s| |s| |13 6| |6| |6| |6] |6]|6| 6] |6 |8

b
6 6 6 13 13 13 13 13 13 13 13 13] 113
16 16 16 16 Z'b 2 2 2 2 2 2 2 2
11<b " b} 11 1 b L b
11 11 1 i 1 16 10 |10 10 10 10 10| |10
10 10 10 10 10 10 16'> 41> 4 4 4 4 4
8~& 8 8 8 8
7V) 7 7 7
& |9¢ |9 9
9 9 9 9 9 9 9 9 9 9 1613 14!} 14

141 [14] |14] 14| [14] [14] [14] |14] [14] |14] [14] {16 151>
15] [15] |15] |15 {15] |15] |15 |15] |15] |15 lSJ 15] | 164

/

AFTER FIRST
PASS

N @
N ©
N ®
N ®
N @
~N ®
~ @
N o
~ 3
a

Figure 8-15. Bubble Sort Action

The assembly-language code for the bubble sort is shown
in Figure 8-16. The bubble sort is an elegant, clean code
but is somewhat slow for all its grace. Pass after pass is
made through the buffer, and each adjacent set of entries
is compared. If the “top” element is larger than the
“bottom,” the two are swapped. A change flag (CHNG) is set
if any swap is made. If no swap has been made in any pass,
the swapping is over, and the sort is done. The BUBBLE
routine here is a good example of the power of indexing.

181



The BUBBLE routine is a great one to run with the contents
of the buffer equated to video display memory if you'd like
to see a graphic example of the sorting process. Set IX
equal to 3C00H and DE equal to 200H (there are two bytes
per entry). You'll have to call the routine from another bit

of assembly-language code, or “dummy up” a CALL from
DEBUG, such as CD 90 B0 C3 03 AC (CALL 8000H and
Endless Loop at A003H).

8000 00100 ORG 8000H

00110 ;2840 anesasassaonstonanaoERoNasssUaRICITRRINARAORRIRNRRRS
00120 ;#® BUBBLE SORT #
00130 ;® ENTRY: (IX)=BUFFER #
00t1hg ;@ (DE)=NUMBER OF ENTRIES IN 16-BIT ENTRY TABLE ®
00150 ;% EXIT: BUFFER CONTAINS SORTED ENTRIES 2

)

»

00160 ;® ALL REGISTERS ®#DESTROYED®
Q0170 ;508G UGNAREFENURIEUTRNNSERDURININTOERERRTODRENRNRTS

8000 DD224480 00180 BUBBLE LD (BUFFER),IX ;SAVE START

8004 1B 00190 DEC DE sDECREMENT COUNT

8005 ED534CB0 00200 LD (COUNT) ,DE ;SAVE FOR PASSES

8009 AF 00210 BUB010 XOR A s "CHANGE"™ FLAG

B0OOA 324E80 00220 LD {CHNG) , 4 ;TQ ZERO

800D ED4B4CBO 00230 LD BC, (COURT) sLOAD #-1

8011 DD2A4ABO 00240 LD IX,{BUFFER) $GET START OF BUFFER
8015 DD6601 00250 BUBO15 LD H,(IX+1) :GET MSB OF FIRST
8018 DDBECO 00260 LD L.(IX) ;GET LSB OF FIRST
801B DD5603 00270 LD D,{IX+3) sGET MSB OF SECOND
801E DD5EO2 00280 LD E,(IX+2) sGET LSB OF SECOND
8021 BT 00290 OR A sRESET CARRY

8022 ED52 00300 SBC HL.DE ;COMPARE BY SUB
8024 2814 00310 JR Z,BUB020 ;DON'T SWAP IF EQUAL
8026 3812 00320 JR C,BUBO20C ;GO IF FIRST SMALLER
8028 19 00330 ADD HL,DE sRESTORE HL

8029 DDT201 00340 LD (IX+13,D SWAP FIRST WITH SECOND
802C DD7300 00350 LD (IX),E

8n2F DD7403 00360 LD (IX+3},H

8032 DD7502 00370 LD (IX+2),L

8035 3E01 00380 LD A1 iNON-ZERO

8037 324E80 00390 LD {CHNG),A $SET CHANGE FLAG
803A DD23 00400 BUBQ20 INC IX ;BUMP PNTR

803C DD23 00410 INC IX

803E 0B a0k 20 DEC BC ;DECREMENT COUNT
803F 78 00430 LD A,B ;s TEST COUNT

gouo B1 oouy0 OR c

8041 20Db2 00450 JR NZ,BUBQ1S ;G0 IF NOT LAST
8043 3A4ESBO 00460 LD A, (CHNG) 3yGET FLAG

8046 B7 Qo470 OR A ; TEST CHANGE

8o47 €8 oougo RET Z ;RETURN IF NONE

8048 18BF 00490 JR BUBO10 ;AT LEAST ONE CHANGE
0002 00500 BUFFER DEFS 2

0002 00510 COUNT DEFS 2

0001 00520 CHNG DEF3 1

0000 00530 END

00000 TOTAL ERRORS

Figure 8-16. Bubble Sort
Routine

182




Hints and Kinks 8-6
Bubble Sort Speed and Storage

The bubble sort is very efficient in terms of
memory storage since it works within the given
buffer and uses very little storage elsewhere.
It's a good sort to use when space is at a
premium.

However, speed can be another matter. There is
no fixed number of iterations through the
table with a bubble sort. The best case would
be one pass, when all entries are already
sorted. The worst case (I believe) 1s the case
where the entries are completely reversed with
the "‘lighter'' elements at the bottom of the
table, water—sogged. If even one element in
the table must be moved from bottom to top., it
will take n-1 iterations, where n is the size
of the table in entries. A rough estimate of
the time for our bubble sort would be 25
instructions per iteration at 5 microseconds
per instruction, or 125 microseconds per
iteration. Moving one element from bottom to
top in a 1000-entry table would require about
an eighth of a second. {Still not bad compared
to BASIC . . . .)

There are a number of other sorts that could be used in
assembly language, but they’re somewhat more complex to
code and should be used only if you'd really like to crank
out every last bit of speed in your assembly-language
sorting. Hopefully these sorts have whetted your interest.

183






Chapter Nine

Graphics Display Processing

Several chapters ago we looked at some of the techniques
used to display character data on the screen. Here, we’ll
talk about graphics display processing — how to put
graphics characters on the screen, how to draw shapes and
lines, and how to “animate” screen images.

Graphics Characteristics
Character Data Storage

Most of you are familiar with the scheme used in the
TRS-80 for displaying graphics, but we’ll go over it again
before we talk about graphics processing. There're 1024
character positions on the screen, arranged in 16 lines of
64 characters each. In the “upper case” version of the
TRS-80, video memory stores only seven bits of data for
each character stored. As a matter of fact, all character
data must have the most significant bit, (bit 7), set to 0, so
the video memory only uses six bits to represent the ASCII
character codes. The “missing bit” is bit 6. Figure 9-1
shows how the 64 valid ASCII codes are stored in memory.

185



CHARACTER  ASCiHi MEMORY* CHARACTER ASCIil MEMORY*

sP 20 H 20H @ 4gH BaH
! 21 21 A 41 2
” 22 22 B 42 g2
# 23 23 c 43 @3
$ 24 24 D 44 24 }
% 25 25 E 45 gs .
& 2 26 F 46 g6 b b
. 27 27 G 47 87 V‘/
( 28 28 H 48 78 i
29 29 i 49 49
. 24 24 J 4A oA A
+ 2B 2B K 4p 28 -
; 2C 2C L 4C gc
- 2D 2D M 4D gD
. 2E 2E N 4g ge
/ 2F 2F (o] 4F gF ;
0 3% 39 P 5@ 19 "
1 31 31 Q 51 1" 5
2 a2 32 R 52 12 o
3 33 33 s 53 i3 o
4 34 34 T 54 14 !
5 35 35 u 55 15 75
6 36 36 v 56 6 b
7 37 37 w 57 17 o
8 38 38 X 58 18
9 39 39 Y 59 19 e
: 3A 3A z SA A it
H 3B 3B ¢ 5B 1B g g
< 3c 3c § 5C IC &
= K))) 3D - 5D iD T
> JE 3E —- SE IE
? IJF 3F SF IF

*MEMORY IS UPPER CASE WITHOUT LOWER-CASE OPTION

Figure 9-1. Video Memory Codes

When the video memory byte holding character data is
read, the memory form of the data is converted back to
ASCII by setting bit 6 if bit 5 AND bit 7 are 0s. Since bit 7 is
never set for character data, the video-memory codes are :
reconverted back to ASCII as shown in Figure 9-2. Gt

186 % !



asancees (g 1]gle[1[2] 2]
KAAAAA

NAND
A

yotoMemonY |4 gl@‘ i !ﬂl | },@'l BIT 7 ALWAYS @ FOR
Ascl
BIT 6 NON-EXISTENT
765432160 IN UPPER CASE ONLY
“NAND" MEANS THAT BIT
& WILL BE A1 IF BIT
7 AND BIT 5 ARE
BOTH ZEROES

Figure 9-2. Reconversion From
Video Memory

When character data from 00000000 through 00011111
(the control codes) or from 01100000 through 01111111
(lower case) are stored in video memory, they lose bit 6
and become the characters shown in Figure 9-1. Attempt-
ing to store codes 0 through 127 results in reading back 2
sets of the 64 valid character codes. The moral to this long
tale is “Never store anything in upper case video memory
except ASCII data (or graphics data, as we’ll see) unless you
want it to be converted to AScII!”

Hints and Kinks 9-1
Lower Case Modification

The lower case modification adds another RAM
chip to the video memory and a new character
generator chip. The RAM chip adds an eighth
bit and eliminates the special video memory
storage codes; all data is then stored in
video memory in 8-bit format. The NAND logic
for bit 6 is also deleted.

187



Storage of Graphics Data

Graphics data is stored exactly the same as character
data. Bit 6 is lost in upper case versions of the TRS-80.
However, here bit 7 is set to indicate that the data does

not represent 64 ASCII-like codes, but 64 graphics con- ; a
figurations. The graphics configurations allowed are b,k
shown in Figure 9-3, along with their data values. o

120 120 13 132 33 d

i o

]

-
=3
<

136 137 18 139 0 ] h
TI100) LR e L] | R
HEEN
144 15 14 )
] i O I I (I
N Oy
EImpn Inpg mm u :
162 ] 168
) B L0 L ‘
mp NE Nl oo
160 A . ; o i
] L B ]
168
] el rrd L] N
| L
) L
L] L)
iame

188
| L :
L 3
1
Figure 9-3. Graphics Codes
4
When the data is read back from video memory for N »
refresh (hardware display of memory on the screen), the
CPU hardware logic examines bit 7 to see if it'sa 0 or 1. If Y
it’s a zero, the 6 bits are input to a graphics character =
generator chip that converts the 6 bits to a 5 by 7 gra- i



phics character. If it’s a one, the character generation is
disabled, and each of the six bits produces one pixel worth

of data, on or off, as shown in Figure 9-4.

Hints and Kinks 9-2
Aspect Ratio

In graphics work, be certain to plot lines and

figures using video display worksheets or

graph paper that shows the correct '‘aspect

ratio'' of pixels.

Approximate Relationship (Within 15% Error}:

2 UNITS
R
FUNIT
/\_/r‘ } 2 UNITS
6 UNITS
ONE PIXEL
ONE CHARACTER POSITION
BlT‘O BIT1
BIT 2 BIT 3
T <]
1
BIT4 | |BITS
> [
THIS BIT IGNORED
{OR NON-EXISTENT)
THIS BIT A ONE
FOR GRAPHICS \ l
1 BYTE FROM
VIDEO MEMORY

7 6 5 4 3 2 1 ]

Figure 9-4. Pixel Representation

189



As each character position on the screen is divided into six
pixels, there are 1024+6=6144 pixel positions on the screen,

divided into 128 columns and 48 rows, as shown in Figure
9-5.

fet—msmmne 128 COLUMNS et

ﬁ 16 LINES OF
48 64 CHARACTER
ROWS 7. POSITIONS

ONE CHARACTER
POSITION HAS
SiX PIXELS

Figure 9-5. Graphics and
Character Positions

Character Position and Pixel Addressing

We saw in Chapter 7 that it’s very easy to output char-
acter data to the screen. The ASCII character you want to
display is simply stored in the proper character position.
Compute the character-position address by adding the
character position number 0 through 1023 to the address
of the start of video memory, 3C00H.

Even when you plan to store a character at a specific line
and character position within a line, the address compu-
tation is simple. The formula for a video-memory address
for a line character-position address is:

ADDRESS = LINE#*54 + LHAR POS + 3C@0H

where LINE is the line number 0 through 15 and CHAR POS
is the character position within the line 0 through 63.

Addressing pixels, however, isn’t that easy. As a matter of

190

Ay




fact, it’s a chore due to the memory mapping of the video
memory. As our seven-year old TRS-80 afficianado puts it,
“Six into eight don’t go!”

Random addressing of pixels requires an x,y address,
where x =0 through 127 and y =0 through 47. This is
familiar to most readers as the BASIC SET/RESET format.
Each pixel is in one of the 1024 bytes of video memory;
within the byte, the pixel may be in bit positions 0
through 5. The task in addressing a pixel is to compute the
byte address of the byte containing the pixel, followed by
the bit address of the pixel within the byte.

If we do some thinking about this problem, we can see that
the byte address is given by:

BYTE ADDRESS=3C0O0H + (¥/3)Q%B4 + (X/2)0

This formula says if we take the Y address and divide by
three, the quotient (Q) will represent the line number (0
through 15) containing the pixel. Multiplying this line
number by 64 will give the displacement from the start
of video memory of the line. If the X address is divided by
two, the quotient will give the character position con-
taining the pixel along the line. The actual byte address is
now 3C00H + line displacement + character displacement.

We now have the byte address, but what about the bit
address within the byte? The row address is given by:

BIT ADDRESS = (Y/3)IR*¥Z + (X/2)R

The remainder (R) of Y/3 gives the row number of the bit.
Since there are two bits per row, this must be multiplied
by two to give the row displacement. The remainder of X/2
gives the column number of the bit. Adding this to the
row displacement gives the bit position 0 through 6 of the
bit.

The formulas above are not easy to visualize, but if you
draw a sketch of the screen showing character positions
and pixel positions and try some examples, you’ll see how
they were derived. Figure 9-6 shows a recap of pixel
addressing.

191



Hints and Kinks 9-3

Higher Speed SET/RESET

Is a higher—speed SET/RESET possible? A brute
force method might employ a table look up
indexed by Y#128+X. Each entry in the table
would be a byte address of 0-1023 and a bit
address of 0-7. This could be stored in two
bytes, and the entire table would require
6144*%2=12288 bytes.

You could modify this table scheme on a line
basis by dividing Y by 16 (easy to do) and
finding (Y/18)R#*128+X. This index would
access a 384—entry table of two bytes each
(1068 bytes) containing the byte address and
bit address. The actual byte address could be
found by: TABLE BYTE ADDRESS + (Y/3)0%Gd +
3COO0H.

Estimated speed for this SET/RESET would be
somewhere around 7500 points per second.

X=0, v=uv4 \g’\_’x=1z7.v=e

X=127, Y=47

T A V.

X=0, Y=47

CoL #81
1. LINE #= .;_ QUOTIENT (EACH LINE OF 16 HAS 3 ROWS OF Xs}
2. ROW # OF CHARACTER = -%— REMAINDER (ROW # WITHIN THE CHARACTER}
3. CHARACTER POSITION = -)2(— QUOTIENT (FROM START OF LINE}
4. COLUMN # OF PIXEL = % REMAINDER (8 OR 1}
5. BYTE DISPLACEMENT FROM START OF VIDEO MEMORY = (LINE #)*64 + CHARACTER POSITION

6. ACTUAL LOCATION= {LINE #)+64 + CHARACTER POSITION * 3Ca0H
7. BIT POSITION WITHIN CHARACTER =(ROW #)+ 2 + COLUMN NUMBER

Figure 9-6. Pixel Addressing
192

g



Random Vs. Character Position Graphics

There are two basic methods of writing out graphics data
to the screen: “character position” graphics and “random”
graphics.

In random graphics, a point is addressed by its x,y
coordinates and either set, reset, or tested. This method of
displaying graphics data requires a graphics driver pro-
gram to convert the x,y coordinates into a byte and bit
address as we discussed above. Random graphics are used
for plotting, animation, line drawing, and the like.

There’s a lot of graphics display work, however, that can
be done by character-position-oriented graphics. This still
involves setting pixels, but the pixels are not addressed
randomly. The pixel positions to be set (or reset) are
known beforehand, and data is output on a character
position basis to produce the graphics.

We'll discuss these methods before getting into the more
complicated random techniques.

Character-Oriented Graphics
Horizontal and Vertical Line Drawing

The simplest graphics processing involves drawing a
horizontal or vertical line. Since there are three rows in a
graphics character position, the horizontal line height can
be either 1/3, 2/3, or 3/3 of a character position height. The
width of a vertical line can be 1/2 or 2/2 of a character
position width.

Figure 9-7 shows some code from the MORG program of
Chapter 13 that draws a thick line across line 12 of the
screen. LINE1Z is equated to 3F00H. The FILLCH (Fill
Character) subroutine is used to fill an 8FH for 64 bytes,
starting at 3F00H.

193



8026 3E8F 00470 LD A,O0BFH ;ALL ON GRAPHICS CHAR
8028 11003F 00480 LD DE,LINE12 sLINE 12

802B 014000 00490 LD BC,64 3+ # OF BYTES
802E CD8385 00500 CALL FILLCH ;DRAW LINE
Figure 9-7. Horizontal Line
Drawing

When you need to draw a vertical line, the process is
similar, except that the “increment” is 64 instead of one.
This sets the next character position under the last to
draw the line vertically. Code for drawing a vertical line is
shown in Figure 9-8 from the DRAWL subroutine of
Chapter 14. The graphics character to be used is in the A

register.

00350 ;VERTICAL LINE HERE
000F* F1 00360  DRA060O: POP AF {RESTORE CHARACTER
0010 11 0040 00370 LD DE,64 ; INCREMENT
6013t 77 00380  DRA065: LD (HL). A ;STORE GRAPHICS
0014 19 00390 ADD HL,DE JPOINT TO NEXT
0015 10 FC 00400 DJNZ DRAO6S ;GO IF HORE

Figure 9-8. Vertical Line
Drawing

If you're doing a large amount of line drawing in a pro-
gram, then it’d be convenient to automate the process
somewhat. One approach is to make a table of lines to be
drawn. This makes it easy to define new displays and to
correct existing ones (another example of a “table-driven”
approach).

Hints and Kinks 9-4
Graphics Driver

A table-driven '‘line drawer'' could be
expanded even further. A graphics driver
subroutine could decode such table entries as

‘idraw horizontal line,'' '‘draw vertical
line,'' '‘draw rectangle with given corners,''
tidraw filled in box,'' !'‘draw diagonal

iine,'' and so forth. This would be a useful
program if you continually do display work,
but probably not worth the time otherwise.

194




We used this method in Chapter 14 for the Tic-Tac-Toe
program. The programmer used a “grid table,” GRIDT, to
define all the lines to be drawn in the Tic-Tac-Toe grid.
(There were more than four lines, due to some segments
that occupied less than a character position.)

Each entry in the GRIDTB is five bytes long (see Figure 8-4)
and defines the graphics character to be used (one byte); a
code for horizontal/vertical (one byte); the number of
character positions to be used (one byte); and the line
starting position (two bytes). The table is terminated by a
minus one. The DRAWL subroutine shown in Figure 9-9 is
called for each entry in the table to draw a single line,
horizontal or vertical.

Although the routines here involved only setting pixels,
it’s easy to see how codes for resetting pixels could also be
incorporated into code or table-driven routines.

Resetting the pixels could be done either by clearing the
screen with graphics 80H characters (about 1/25th second)
and redrawing a new line or by going back over the old
line with a “fill” byte of 80H. The routines above allow
horizontal or vertical lines to be drawn at rates of about
3000 lines per second (assuming average line lengths of 20
character positions) which would permit fast game dis-
plays or other display processing.

195



aunnoigns IMVYHA "6-6 24nBiJ

and 054500

NENIZY: L3y o%noo 60 V100

28 d0d 0EN00 3] 16100

3a d404d 02100 La 1gloo

SHALSI DAY FYOISIY! TH d40d io60vua 0L w00 L3 11100

JYoH 41 09! S90VHQa ZNra 004100 24 0Ot 16100

IX3H 0l INTO4! 3¢ aay 06£00 6L +H100

SOIHdVED FHOLS! v a1 :590vud 08€00 LL sE100

LNIWIYONT ! h9taa at 0LEOD o000 L1 10100

YALOVHYHD FHOLSIY! av d0d :090VHd 09E00 La + 4000
AYIH INIT TVIILHIA! 05€00

aNoat oéovya gr onEOoO g0 gt + Q000

qYOW 41 09! osovya ZNra 0EE00 24 0t + 8000

YILNIOd dHng! TH ONI 02E00 £e V000

SOTHAVYD FHOLS! vV (TH) a1 :osovya oLEDO Ll 16000

¥YHD FHorsIy! av d0d 00£00 Ld 18000
FYIY INIT TVINOZIHOY ¢ 06200

TYOTLYIA 4T 09°* ogovya‘zn e 08200 L0 02 1 9000

Isar! v 40 04200 L4 16000

OVTd LUFA/ZIHOH 130! o'y an 09200 6L + h00O

HALOVYVHD FAYS!? 4y HSNd 05200 E| + €000

TH Hend 0h200 ket 12000

aa HSnd 0gEzo0 sa 11000

SYALSIDAY FAVS! poX:4 Hsnd "‘Ecmm 02200 G2 10000
: 01200
RN R B AE RGN RO RO UR R E DU OB R AGRO AR TR 00200
4 AIAVS SHILSIDIY TTY LIXH Wt 06100
s Q3Sn 38 0L SNOILISOd HZLOVYVHD J0 #=(8) 8t 0gioo
# NOILISOd 1YVLIS HIZHOS=(TH) w!f 0L100
e TVOILYAA 4I OHIZ-NON ‘TVINOZIYOH J4I 0=(D) w? 09100
# qasn A4 0l HILOVHVHO SOIH4YHOD=(V) XHLNF 'y 05100
# ANIT TYOTIIYIA HO IVINOZIHOH SHVYCQ wt orLoo
» FNILAOHENS INIT AVHQ wt 0£100

uu-:s-maa=un-‘-aanaamaaanaauua-‘*atsuss:aanmnn‘uawss.mu 02100 MW
RER AL RYLNE 0LL00 -

HSMvyQ ATLIL 00ti00



Drawing Patterns and Figures

You can also use graphics done on a character-oriented
basis to draw patterns or figures. In this case, you must
“plot” the figure on a display worksheet or graph paper,
convert it to the proper graphics code, and then output it
to the correct character positions.

One of the programming problems that seems to come up
time and time again is display of “large format” char-
acters. The Tic-Tac-Toe program of Chapter 15 uses large
characters for messages, and it’s frequently done in other
game programs. Let’s look at the techniques involved in
this program; it’ll illustrate the general approach for dis-
playing other types of patterns.

The first task in producing patterns such as alphanumeric
characters is to draw out the patterns to be displayed.
Figure 9-10 shows a typical pattern for the “large char-
acters” used in Chapter 14. Each character is an 8 by 6
matrix. The pixels are filled in to produce a pleasing
alphabetic or other character. You could use any size
matrix, but a multiple of two works out conveniently for
the horizontal dimension while a multiple of three works
out nicely for the vertical dimension, due to the 2 by 3
mapping of pixels to a character position.

Hints and Kinks 9-5
Large Character Format
The approach of defining a matrix of dots to
represent alphanumeric and special characters
is used to generate characters for video
displays, dot matrix printers, and the like.
Reference descriptions of !‘character
generator'' chips to find characters already
defined in 5 by 7, 6 by 8, and other formats.
You can then easily convert them to tables
such as the one used in the Tic-Tac-Toe
Program, saving you the work of drawing them
out manually.

197



8 PIXELS

6
PIXELS

LETTER “M"

Figure 9-10. “‘Large” Character
Pattern

After you've established the pattern, you convert it to a
graphics-character data value. In this case, there are four
graphics characters horizontally and two vertically (a total
of eight). Each graphics character is then converted to
eight bytes as shown in Figure 9-11.

9FH 90H AgH ABH
18e11111

o
HRlosar

16 XXXXKX

95H 82H 81H AAH

Figure 9-11. Pattern Conversion

198

N
R
»H@

L



Now the eight bytes per character are stored in a table. If
the patterns have some numerical sequence, you may store
them in logical fashion, such as 0 through 9. In this case,
the characters were stored from A through z, followed by
space, -, 7, and !. A second table, CTAB, then holds the ASCII
equivalent in the same order, as shown in Figure 9-12. To
locate any character data, CTAB is first scanned for the
character. When it is found, its index is multiplied by 8 to
give the location of the character data in DOTTAB.
Character data in DOTTAB doesn’t have the most
significant bit set; it’s set in the graphics driver rou-
tine (LARGEC).

CTAB| A DOTTAB 8 BYTES FOR“A”
CTAB+1| B |pOTTAB+8 oo tote”
+2| C +16 oo %
+3| D +24
E
= > = ]
T | Inpex
u
v
W
X
Y
Z
SPACE
?
CTAB+29 | ! | DOTIAB+| 8 BYTES FOR “i*

Figure 9-12. CTAB/DOTTAB
Relationship

Outputting a large-format character proceeds like so:

1. Search CTAB for the character.

2. Use the CTAB index+8 to find the character data in
DOTTAB.

3. Output the first four bytes from DOTTAB to a screen
character position start through start+ 3.

199



ition. A contains the
while IY contains the

4. Output the next four bytes from DOTTAB to the
ure 9-13. It uses the steps above to output a large
screen address. In use, you would write an ASCII character
string to the screen by repeated calling of LARGEC with the
next ASCII character. Between calls, the screen pointer is

screen start+64 through screen start+67.
incremented by two to provide spacing between characters.

=
i)
2
Q
<
n
A
0
i
-t
Q
-
=
o
£
o
g
o]
&
Q
)
=
ey
=
[=]
=
=
]
w2
Q
3]
O
[
<
ot
]
Ko
B

character to a given screen pos
character to be output in ASCII,

Fig

e

NHNLIY!
MO JYIINT LON 41 09!
yltid HIZEIS dung!
YINd LNGWITI dHng!
FYOLIS!
SOTHdYYD L3St
SININITE 13D!

nou ¥od!

Nunigu!

SYALSIDIY FYOlLsay!
oY WOLLOE FYOIS!
YINd NIIYOS OL aav!t
isneay dNIT

KoY dOl 3IHOIS!'
NYdLIVd Ol INIOd!
XTHIVH 9 X€ 8!
BuXJAANT !

taXJANI ¢

ZwXIANT ¢

¥I 0l TH H3IJSHVYL®
LNEWIOVTASIA aNIad?

RMYYD HYATO!
L+LHYLS ATdYLl dVHO!

TH 05 XI HEASNVHL?
aNnod LON 41 05
LX3IN ol dung!
¥ALOVHYHD H04 LSEL!
$SIYaaqy ITEVI HILOVHVHO!

SHILSIDIY FAVS!

G OURABENURURANBRERBDNENUNRABRRBROHRNURRRBARBRRRURRORS
QIAVS SHILSIDIY TV PLIXY

NOILISO0d NIIUOS=(XI)
TTJSY NI QIHOLS 38 01 HILOVHVHO=(V) :XYINI

#
a8
#*
#
#
#
#

auinoy H3HDHY
‘€1-6 3nbid

13y
0LOLYH ZNra
X1 INT
XI ONT
¥ (RI) a7
¥t 138
(XI)'v a1 :0L0LVH
w'g a7  YSIVH
L3y
ay dod
o8 404
TH 404
s d0d
HSLYN 11Y0
08I aay
09‘0d a1
¥SIVN TIY0
o8 XT aqy
gy110d'o0d an
XI'XI aay
XI'XI aay
XI*XI aay
X1 d0d
H HSNd
08¢ IH 248
¥ ¥0
L+gy 1008 a1
TH dod
XI HSnd
0Z0¥VT ZN ar
X1 INI
(x1) dD 10208V
gy10 ‘X1 an
X1 HENd
TH HSNd
24 HSNd

4y HSAd 2394V

aasn XIMIVH 9 X9 8

NOTIISOd NITUOS NIAID 1V HILOVHVHD FOHVT SIUOLS
AY14SIQ HILOVHVYHD HFDUVT
NG HANREAER ROV EE BB N GNP R R R RB RN NG NRR DA RERENRRS

DEDYV AYING
450Uy 711l

0L500
09400
06500
0rS00
0E£G00
02600
01500
00500
06H00
0gHoo
0L700
091700
05100
0hh00
0EH00
02 ho0
0L y00
oonoo
06E00
0g8Eo0
0LE0D
09£00
06E00
o0KEDO
0EEQD
02€00
0LE00
00E00
o6zo00
08200
0Leoo
09200
06200
[ ARy
0E200
02200
01e00
00200
06L00
08100
0LL00
09L00
06100
onioo0
CEL00
02100
01100
00L00

cd
€2
€2
00 LiL
CE|
00 al
7o

13
18E00

2£00
+8E00

+ 1900
62
62
6e
Lg

Zh
1Y HOO
S
64

€2
00 34

16400 LE

k!

60
ot
aa
ag
ad
: i)
adq
90

La
[2¢]
13
adq
an

Lo
as
ag
1Y
ag
aa
qaq
aa
Gd
ad
L9
10
13
qad
0z
aa
ad

aa
S3
]
Gd

181700
19400
s 1 h00
1 2h00
+dE00
+a€o0
1VEOO
18E00
1 LE00
+9€00
16800
+h€0O
12800
14200
13200
1¥200
s L200
16200
12200
10200
13100
10100
sV L00
16100
1 L100
19100
1E£100
2100
10100
13000
12000
6000
16000
1£000
12000
1 1000
10000

200



The MATSR subroutine within LARGEC writes out four
bytes for the row. It is called twice, once with the screen
start address, and once with the screen start address + 64.
The remainder of the logic in the program involves

searching CTAB and accessing DOTTAB.

cooo

coo0
coo01

Coo2
003
c005
coo7
Co09
Co0A
cooc
coop
COOF
co1z
co14

co1s

co16

co17

co18
CO1A
co1c
Co1D
CO1F
co21

co22
cozs
coz6
co28
cozg
C024A
cozc¢
€030
co3z
€033
036
€037
co3e
co3c
CO3E
CO3F
cou2
Co4y
coas
Coue
cout
cous
coug
coua
COUB
Cokc
COo4D
COLE
CO4F
0ooo

F5

5C

7D
CB3B
1600
3001
14
06FF
oy
D603
F20CCO
c603
07

82

4F

68
2600
0606
29
10FD
1600
19
11003C
19
0600
F1

BT
200¢C
pp2islco
DDOg

DD214 ACO
DDO9
TE
DDA6OO
18F2
81

82

84

88

90

AO

FE

FD

FB

FT

EF

DF

00100
00400
00410
ook 2o
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
ao540
Q0550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
oaTko
00750
00760
00770
00780
00790
o08oo
00810
oogzo
00830
00840
00850
00860
00870
00880
00890
00900
0ag910
00920
00930
00940
00950
00960
00970

00000 TCTAL ERRORS

ORG

0CO00H

I R R R R R R R R R R R R R R R R R R R R R R R R R S R R R R R R R )

:
;® SUBROUTINE TO SET OR RESET A PIXEL GIVEN X (0-127) *
;% IN H REGISTER AND Y (0-47) IN L REGISTER. .
;®* (A)=0 FOR SET, 1 FOR RESET.

I R R R R R R R R R R RN R R R R R R RN E RN ER R RRE )

SETRST

SET10
SET20

SET30

SET36

RESET

MASK

HASK1

PUSH
LD
LD
SRL
LD
JR
INC
LD
INC
SUB
JP
ADD
RLCA
ADD
LD
LD
LD
LD
ADD
DJNZ
LD
ADD
LD
ADD
LD
POP
OR
JR
LD
ADD
LD
OR
LD
RET
LD
ADD
LD
AND
JER
DEFB
DEFB
DEFB
DEFB
DEFB
DEFEB
DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
END

NZ,RESET
I1X,MASK
1X,BC

A, (HL)
(IX)
(HL), A

I1X,MASK1
1X,BC
A, (HL)
(IX)
SET36
B81H
B2H
BUH
B8H
90H
0AOH
OFEH
OFDH
OFBH
OF7H
OEFH
ODFH

3 SAVE SET/RESET FLAG
e ¢
i Y
;GET CHAR POSITION (0-63) IN E
sSET COL# TO 0
;G0 IF COL#=0
;COL#=
3=1 TO B
;BUMP QUOTIENT IN B=LINE#
;SUCCESSIVE SUBT FOR /3
;G0 IF NOT NEGATIVE
; ADD BACK FOR REMAINDER=ROW#
; (ROW#) ®2
; (ROW#)#24+COL#=BIT POS
;SAVE BIT POS IN C
;LINE #
;NOW IN HL
;SHIFT COUNT
;MULTIPLY LINE#%64
;LOOP TIL DONE
;DE NOW HAS CHAR POS
;(LINE#)*64+CHAR POS IN HL
3 START OF VIDEO
;(LINE#)®*64+CHAR POS+3COO0H
;BC NOW HAS BIT POS
;GET SET/RESET FLAG
; TEST FLAG
;G0 IF RESET
;START OF MASK TABLE
;POINT TO MASK
;LOAD PIXEL
;SET PIXEL
;STORE IN VIDEO
; RETURN
;RESET MASK TAELE
s POINT TO MASK
;LOAD PIXEL
;RESET PIXEL
;GO TO STORE, RETURN
i MASK TABLE

Figure 9-14. SETRST

Routine

201



Drawing Random Points

Now let’s get back to the problem of setting and resetting
random points. We know from our previous discussion how
to compute the bit and byte address of the pixel, given an
x,y coordinate. Figure 9-14 shows a subroutine that will
set or reset any given pixel. Entry is made with X (0
through 127) in H and Y (0 through 47) in L. The A register
is 0 for a set function and 1 for a reset function.

First compute the address of the byte containing the pixel
by the algorithm previously described. Then use the bit
position to access a “mask” table of one of six entries.
There are two mask tables: one for setting a pixel; one for
resetting a pixel. The byte containing the pixel is then
ANDed with the mask and stored again to set or reset one
of the six pixel bits in the byte location.

You should have first set all character positions that are to
be used for graphics to a graphics “null” character 80H to
ensure that graphics mode and not character mode is in
force.

Hints and Kinks 9-6
If an 80H is Not Used .

If you attempt a SET/RESET for a pixel in a
character position that has not been
initialized by 80H, strange results may occur
in an upper case TRS-80. A blank character
position could have either 20H (ASCII space)
or 80H (graphics null) in video memory. If it
has 20H, attempting to SET a point and then
turning on bit 7 results in 101X XXXX, where X
is the pixel that has been set. This results
in two pixels being displayed, one for the SET
and one from the 20H! Always clear the area to
be used for graphics with 80H before display
work!

202



Animation

This routine takes about 400 microseconds to set or reset a
pixel, making the number of pixels that can be processed
per second about 2500. This is 20 times or so faster than
SET/RESET in BASIC, but still somewhat slow for truly high-
speed processing. If a “frame” of a picture was all 6144
pixels, for example, then only one third of a frame per
picture could be processed per second. That’s also assum-
ing that no other “number-crunching” was being done.

Of course, if the number of active pixels per frame is
fewer, then we can process something close to animation
rates of 16 frames per second. If each new frame of data
RESET one half of the points and SET a number of points
equal to half on the screen, we’d be SETting and RESETting
the average number of points per frame, then, for each
frame. If we can process 2500 points per second, that gives
us about 156 points per frame, which is somewhat sparse
for many pictures, but about the best that can be done.
Another problem here is obtaining the data base for the
animation. (The thought of digitizing 100,000 points for
40 seconds worth of Star Warp, or some other game, gives
me pause . ...)

Line Drawing

We've discussed the simple procedures of drawing hori-
zontal and vertical straight lines, but how about angled
lines?

The BASIC approach to this problem would undoubtedly
involve trigonometry and be very slow. However, there is
a non-trigonometric approach that would work well in
assembly language to permit high-speed processing. The
one we’ll illustrate here involves minimum math and a
somewhat different approach, so bear with us — it'll be
fairly high speed and worth the effort.

Figure 9-15 shows a line on the TRS-80 screen. It starts in
the upper left and is drawn diagonally at a shallow angle.
The distance from X1 to X2 is equal to some “delta X”

203



expressed in pixel units. In this case, X1 is 10, X2 is 20,
delta X is 20-10 or 10 units. The distance from Y1 to Y2 is
equal to some “delta Y,” expressed in the same units. In
this case delta Y is 21-15, or 6 units.

X=10,¥Y=15

X=20,Y=21

20-10 =10 A-READ “DELTA”
Figure 9-15. Angled Line

If we SET a point at every X value — 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, and 20 — what points would have to be set
for Y values? We can easily find out by computing the
amount that Y has to be incremented for every new X
position. This is:

DELTA Y/DELTA X = B/10 PIXEL

In other words, every time we increment X by 1, we
increment Y by .6. The points that would be set for this
line would therefore be:

X Y X Y
10 15 16 18.6
11 15.6 17 19.2
12 16.2 18 19.8
13 16.8 19 204
14 17.4 20 21
15 18.0

Notice that we wrote some points more than once, but at
least the algorithm is straightforward.

There is a minor problem here — how do we work with
fractions in assembly language? In BASIC we have the
mechanism built into a FOR ... TO ... STEP loop. How do we
implement it here?

204



Scaling

We'll scale Y upwards by 256. This means we’'ll hold Yas a
number multiplied by 256. The high-order 8 bits will be
the integer portion of the number, and the low-order 8 bits
will be the fractional part, as shown in Figure 9-16. When
we find delta Y/delta X, we'll get a result that is actually
(delta Y*2561/X as shown in Figure 9-17. We can then add
the result to the 16-bit scaled representation of Y to get
each new increment of Y. After every add, we’ll take the
new value of X and the integer (higher 8 bits) of Y to set
the new point. The whole process for the points we’ve been
discussing is shown in Figure 9-18.

HIGH-ORDER 8 BITS LOW-ORDER 8 BITS

INTEGER PORTION FRACTIONAL PORTION
OFY

Figure 9-16. Scaling Example

X=10,Y=15

\x=20,\[=21

AX=20 ~10=10

AY=21-15=6

AY+256 = 6+256 =1536

AY*256/AX=153.6 — 154 (ROUNDED UP)

AY=6 goBBZV 10

AY+256 | 0P QPG| 10 | JOB P8P | 6+256=1536

AX=10 2B 1018

1536/10 =154
AY+256/aX | 02 B G008 | | A1 818 | poiNpED)

Figure 9-17. Scaling With
Division
205



X=20,Y=21

AX=20 -10 =10

AY=21-15=6

AY*256 = 6+256 =1536
AY*256/AX=153.6 — 154 (ROUNDED)

X e 16-BIT SCALED VALUE  YINTEGER
g 800011 1100000000 15256 = 3840 15
i 2e@@ 11110011010 3840 + 154 = 3994 15
12 203 \@0@2|001 10100 3994+ 154 = {148 16
13 #0801 9p@z| 11001110 4148+ 54 = 4392 16
14 @o%180@101 101000 4302+ |54 = 4456 17
15 2B FFB00000010 4456+ [54= 4618 18
16 gop ogiglioot i tao 461@+ 154 = 4704 8
17 Bgmggiijcoriorio 4764+ 154= 4918 19
18 #ABS11|11010000 4918+ i54=5@72 19
19 geoid @01 101010 S@T2+ 154 =5226 8
20 2081 $14 1100000100 5226+ 154=53808 VA
Figure 9-18. Basic Line Drawing
Algorithm

Hints and Kinks 9-7
Scaling

The problem of scaling was not a trivial one
in early computer work. (Digital Computer
Programming by McCracken, 1957, devotes a
chapter to '‘Decimal Point Location
Methods.'') Higher—~level languages solved the
problem of working with mixed numbers, and
most !‘number crunching'' applications use a
language other than assembly language to avoid
laborious scaling processing.

Now this algorithm works fine for the one case we’ve been
discussing, but how about the general case? When the

206



[PPSR

angle is more acute, as shown in Figure 9-19, the situation
changes. Now delta Y is greater than delta X, and we must
increment Y by one and X by some fractional value. Very
well — for this case we’ll do just that. But wait a minute
— how many cases are there?

X=15,Y=25

15-10 =5

Figure 9-19. Second Case of
Angled Line

There are actually eight cases, when we consider the size
of delta X to delta Y, and the direction of the line. They’re
shown in Figure 9-20. Four of these increment X, and four
increment Y.

AX AY IAXEIAYI] LINE X INCREMENT Y INCREMENT
+ o+ + - +1 AY/AX
+ + - e AX/AY +1
+ - + fad +1 AY/AX
+ - - ~ AX/AY -1
- + + - -1 AY/AX
-+ - Ve AX/AY +1
- - + - -1 AY/AX
- - - Y AX/AY -1

NOTES:
1. AXIS X2 ~ Xt

. AY IS Y2 - Yt

. 1AX1 1S ABSOLUTE VALUE

. 1AY11S ABSOLUTE VALUE

. AXEIAYT IS IAXE COMPARED TO 1AYL. 1f +, 1aX1 IS LARGER THAN 1AYL, IF —, 1aY1 IS LARGER THAN 1axi

. INCREMENTS SHOW WHICH VARIABLE WILL BE STEPPED ONE UNIT AT A TIME, AND WHICH WILL BE FRACTIONALLY
STEPPED

AU bwN

Figure 9-20. Line
Drawing Configurations

The algorithm for the LINE subroutine goes like this:

1. Find delta X by subtracting X2-X1. Call this value DX.
2. Find delta Y by subtracting Y2-Y1. Call this value DY.

207



3. If the absolute value of DX is greater than the
absolute value of DY, PUT 1+256 in XI (X increment),
absolute value of DX +1 in CT (count), and absolute value
of DY*256/DX in YI (Y increment). X will vary in steps of
one in this case.

4. If the absolute value of DX is less than or equal to the
absolute value of DY, put 1+256 in YI, absolute value of
DY+11in CT, and absolute value of DX*256/DY in XI. Y will
vary in steps of one in this case.

5. If DX is negative, negate XI.

6. If DY is negative, negate YI.

7. Increment X and Y from their starting values for a
number of steps equal to CT.

This algorithm (with some nuances) is shown in the BASIC
subroutine of Figure 9-21. It does all of the number
crunching through step 4 above. You could implement the
code in assembly language, but my trial effort was about
120 lines (!). The parameters from the BASIC processing
are POKEed into locations FFO0H through FFOAH for use by
the assembly-language LINE program that does the
high-speed line drawing. In this way you have the best of
both BASIC and assembly language (and I can avoid
explaining 120 lines of code!)

10000 DX=X2-X1

10010 DY=Y2-Y1

10020 IF (DX=0) AND (DY=0} THEN XI=0:YI=0:CT=1:G0T0 10070
10030 IF ABS(DX)>ABS(DY) THEN XI=256:CT=ABS(DX)+1:YI=ABS(DY*256/DX)
10040 IF ABS(DX)<=ABS(DY) THEN YI=256:CT=ABS(DY)+1:XI=ABS(DX%#256/DY)
10050 IF ABS(DX)<>(CT-1)#¥X1/256 THEN XI=XI+1

10060 IF ABS(DY)<>(CT-1)%#YI/256 THEN YI=Y¥YI+1

10070 IF DX<0 THEN POKE &HFF09,1 ELSE POKE &HFF09,0

10080 IF DY<0 THEN POKE &HFFO0A,1 ELSE POKE &HFFO0A,0

10090 X=X1%256

10100 Y=Y1#256

10110 POKE &HFF00.X~-INT(X/2561%256

10120 POKE &HFF0O1,INT(X/256)

10130 POKE &HFF02,Y-INT(Y/256)#256

10140 POKE &HFFO3,INT(Y/256)

10150 POKE &HFFOL4 ,XI~INT(XI/256)%256

10160 POKE &HFF05,INT(XI/256)

10170 POKE &HFF06,YI-INT(YI/25612256

10180 POKE &HFFOT,INT(YI/256)

10190 POKE &HFFO8,CT

10200 DEFUSRO=z&HFFOB

10210 A=USRO(0}

10220 RETURN

Figure 9-21. Line Routine in
BASIC

208



The LINE routine is shown in Figure 9-22. It performs
steps 5 through 7 of the algorithm. LINE calls the SETRST
subroutine described previously. LINE will draw a typical
20-point line in about 10 milliseconds, not including the
BASIC processing portion. It will also draw vertical or
horizontal lines and points, but not as efficiently as the
other techniques described.

FFQO

000B

FFOB 3A09FF
FFOE B7

FFOF 280D
FF11 210000
FF14 EDSBO4FF
FF18 BT

FF19 ED52
FF1B 2204 FF
FF1E 3A0AFF
FF21 BT

FF22 280D
FF24 210000
FF27 EDSBOG6FF
FF2B B7

FF2C ED52
FF2E 2206 FF
FF31 DD210GFF
FF35 DD6601
FF38 DD6EO3
FF3B AF

FF3C CDSFFF
FF3F 2A00FF
FF42 EDSBOL4FF
FF46 19

FF47 2200FF
FF4A 2A02FF
FF4D EDSBOGFF
FF51 19

FF52 2202FF
FF55 3A08FF
FF58 3D

FF59 3208FF
FF5C 20D3
FF5E C9

FFSF F5
FF60 5C
FF61 7D
FF62 CB3B
FF64 1600
FF66 3001
FF68 14
FF69 O6FF
FF6B 04

00100
00110
00120
00130
001490
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
oo440
00450
Qo460
00470
00480
00490
00500
00510
00520
00530

00540

00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
006 80
00690
00700

ORG

QFFQOH

:illi!i!lllllllllllllllliilil!ill!llI!!l!Illl“lllllllll.

H
H
5

BLOCK
LINE

LINCI1O

Lino20

+4,+5:
Y INCREMENT,
ELSE 0/+4A:

:* LINE SUBROUTINE.
;% TWO GIVEN POINTS. OPERATES
;* DRIVER PROGRAM. ENTER WITH
;% BLOCK+0,+1:
o B
L ¥
. ¥
)

DEFS
LD
OR
JR
LD
LD
OR
SBC
LD
LD
OR
JR
LD
LD
OR
SBC
LD
LD
LD
LD
XOR
CALL
LD
LD
ADD
LD
LD
LD
ADD
LD
LD
DEC
LD
JR

SCALED X VALUE/

DRAWS A STRAIGHT LINE BETWEEN ANY

IN CONJUNCTION WITH BASIC
BLOCK SETUP AS FOLLOWS:

ABSOLUTE X INCREMENT, SCALED/+6,+7: ABSOLUTE
SCALED/+8:COUNT/+9: 1 IF NEGATE X INC

1 IF NEGATE Y INC ELSE O
AR R R AN RN AR B R E R AR AR O R RN AR F RN B R R R RN NIRRT

11
A, (BLOCK+9)
A

Z,LINO1TO
HL,O

DE, (BLOCK+4}
A

HL,DE
(BLOCK+4},HL
A,{BLOCK+10)

A

Z,LINO20
HL,O0
DE.(BLOCK+6)
A

HL,DE
(BLOCK+6) ,HL
IX,BLOCK

H, (IX+1}

L, (1IX+3)

A

SETRST
HL,(BLOCK}?
DE,(BLOCK+4}
HL,DE
(BLOCK), HL
HL, {BLOCK+2)
DE. (BLOCK+6)
HL,DE
(BLOCK+2) ,HL
A, (BLOCK+8)

A
(BLOCK+81,A
NZ,LINOZ20

*

L3

]

+2.+3: SCALED Y VALUE/ #
13

*

]

#

sGET INCREMENT SEHNSE
s TEST
1GO0 IF XINC +
{ZERO HL
$GET XINC
ZERO C
sNEGATE
sSTORE ~ XINC
;GET INCREMENT SENSE
; TEST ¢
1GO IF YINC +
$ZERO HL
;GET YINC
$ZERO C
sNEGATE
;STORE - YINC
s POINT TO BLOCK
sGET X
$GET Y
;FOR SET
1SET POINT
;CURRENT X
$ INCREMENT
;s BUMP
;STORE
s CURRENT ¥
s INCREMENT
;BUMP
{STORE
s COUNT
sDECREMENT
;SAVE
:GO IF MORE
sRETURN TO BASIC

SRR RET R RN B R R A RN NI R AN N R AR DR AN RN NN IR RN RO RN
;® SUBROUTINE TO SET OR RESET A PIXEL GIVEN X (0-127} &
:®* IN H REGISTER AND Y (0-~471 #

:® (A)=0 FOR SET, 1 FOR RESET.
Y1 2 Y Rz 2222222222222 22222 R 2R SR RS2 R0 R

SET10
SET20

PUSH
LD
LD
SRL
LD
JR
INC
LD
INC

IN L REGISTER.
3

1SAVE SET/RESET FLAG
31X
;Y
yGET CHAR POSITION (0-63) IN E
;SET COL# TQ O
;GO IF COL#=0
sCOLA=1
;-1 TO B
;BUMP QUOTIENT IN B=LINE#

209



FF6C D603 00710 suB 3 ;SUCCESSIVE SUBT FOR /3

FF6E F26BFF 00720 JP P,SET20 ;G0 IF NOT NEGATIVE
FF71 C603 060730 ADD A,3 1ADD BACK FOR REMAINDER=ROW#
FF73 07 00740 RLCA s {ROW#I®2

FF74 82 00750 ADD A,D ;(ROW#)®2+COL#=BIT POS
FF7% 4F 00760 LD C,A ${SAVE BIT POS IN C
FF76 68 00770 LD L,B sLINE ¢

FF77 2600 00780 LD H,0 ;NOW IN HL

FF79 0606 00790 LD B,6 ;SHIFT COUNT

FF7B 29 00800 SET3O ADD HL,HL sMULTIPLY LINE#%6%
FF7C 10FD 00810 DJNZ SET30 ;LOOP TIL DONE

FF7E 1600 00820 LD D,0 ;DE NOW HAS CHAR POS
FFB0O 19 00830 ADD HL,DE :(LINE#)#64+CHAR POS IN HL
FF81 11003C 00840 LD DE,3CO0H ;START OF VIDEGC

FF84 19 00850 ADD HL,DE 1(LINE#)#*64+CHAR POS+3C00H
FFB85 0600 00860 LD B, 0 ;BC NOW HAS BIT POS
FF87 F1 00870 POP AF sGET SET/RESET FLAG
FF88 BT 00880 OR A s TEST FLAG

FF89 200C 00890 JR NZ,RESET ;GO IF RESET

FF8B DD21A3FF 00900 LD IX,MASK ;START OF MASK TABLE
FF8F DDO9Y 00910 ADD 1X,BC $POINT TO HMASK

FF91 TE 00920 LD A, (HL} yLOAD PIXEL

FF92 DDB60O 00930 OR (1X) 3SET PIXEL

FF95 77 00940 SET36 LD (HL), A ;STORE IN VIDEO

FF96 €9 00950 RET i RETURN

FF97 DD21A9FF 00960 RESET LD IX,MASK1 {RESET HMASK TABLE
FF9B DD0O9 00970 ADD 1X,BC +POINT TO MASK

FF9D 7E 00980 LD A, {HL) +LOAD PIXEL

FFYE DDA60O 009950 AND (1x) ;RESET PIXEL

FFA1 18F2 01000 JR SET36 ;GO0 TO STORE, RETURN
FFA3 81 01010 MASK DEFB 81H s MASK TABLE

FFAY 82 01020 DEFB 82H

FFAS 84 01030 DEFB 844

FFA6 B8 01040 DEFB 88H

FFAT 90 61050 DEFB 90H

FFA8 &0 01060 DEFB GACH

FFA9 FE 01070 MASK1 DEFB OFEH

FFAA FD 01080 DEFB OFDH

FFAB FB 01090 DEFB OFBH

FFAC F7 01100 DEFB OFTH

FFAD EF 01110 DEFB OEFH

FFAE DF 01120 DEFB ODFH

0000 01130 END

00000 TOTAL ERRORS

Figure 9-22. LINE Routine

210



Chapter Ten
Cassette Output, Music, and Parallel
Printers

We'll be looking at two types of input/output processing in
this chapter: I/O on the cassette port and parallel printer
output. We’ll also take a look at system I/O in general.

The TRS-80 reads and writes cassette tape primarily using
software drivers rather than hardware logic. You can use
these software drivers in ROM to read and write down to a
bit at a time from cassette. Because the cassette port is
easily addressable at an assembly-language level, you can
also use it to generate “square wave” outputs that can be
musical tones or other signals.

System parallel printers are addressed differently than the
cassette port. We'll see how simple printer drivers may
be coded.

Input/Output Programming

Many programmers are unnecessarily upset by input/
output programming. Part of the reason for this is that I/O
is done automatically in large computer systems; the
programmer must make special supervisor calls to perform
1/0 through the operating system used on the system. This
approach is necessary because the system is performing
many tasks (many “job runs”) simultaneously and is
increasing the throughput by overlapping processing on
one job with I/O on another. Another reason for the
mysteries of I/O is some programmers feel that it requires
an understanding of (ugh!) hardware.

In the TRS-80, we're operating in a different environment
than a large multi-programming system (and believe it or

211



not, a much more efficient environment on an individual
basis). We can perform I/O ourselves without having to go
through the operating system; of course, the provision is
also there to have the operating system do our work for us.
It’s user’s choice. As far as knowing “hardware,” most pro-
grammers don’t realize the simplicity of the logic involved
in interfacing to most computer peripherals. We'll show
you how easy it is in this chapter.

7-80 and TRS-80 Input/Output

There are two basic types of I/0 in any microcomputer sys-
tem — I/O mapped I/O and memory-mapped I/O.

I/O Mapped 1/0

I/0O Mapped I/O uses the I/O instructions in the Z-80.
There are four that we’ll talk about here: IN A,(n); IN r,(C);
OUT (n),A; and OUT (C),r. You can accomplish the same
thing with all of them: transfer one byte of data between
an external I/O device and a CPU register. The IN
instructions read one byte from the external device into a
CPU register, while the DUT instructions write one byte
from a CPU register to an external device.

Hints and Kinks 10-1
Other I/0.Instructions

The other I/0 instructions are the '‘block'’
I/0 instructions. They are somewhat similar in
action to the block move instructions. Data
can be transferred between memory and an I1I/0
device in a block by setting up a block
address in HL and a byte count of 1-256 in the
B register; the C register holds the address
of the I/0 device.

Like the block moves, the I/0 block
instructions may go forward through the block
(INIR,0TIR), backward through the block
(INDR,OTDR), or ‘‘semi-automatically'’
{external loop back to INI, IND, OUTI, or
OUTD). The '‘automatic'' I/0 block
instructions cannot be used unless the 1/0
contiroller has been designed for such a

transfer.

212




The format of these instructions is shown in Figure 10-1.
All use an I/0 address. This is an eight-bit address that is
contained in the I/O instruction itself (IN A,(n);0UT (n),A)
or is in the C register (IN r,(C);0UT (C),r). The I/O address
can be 0 through 255.

11
IN A, (N) e1ion READS ONE BYTE INTO
A REGISTER FROM
N DEVICE N
11101101
INR, (€} READS ONE BYTE INTO R
REGISTER FROM DEVICE
o1 R 000 WHOSE ADDRESS IN C
11010011
OUT (N), A WRITES BYTE FROM
A REGISTER TO DEVICE
N N
b
ouT(C), R 1101101 WRITES BYTE FROM R
REGISTER TO DEVICE
01 R 001 WHOSE ADDRESS IN €

Figure 16-1. 1/0 Instruction
Formats

When an I/O instruction is executed, it goes through a
predefined sequence. The I/O address is first sent out along
the system address lines A7-A0. Shortly afterwards, data is
output along the data lines D7-D0 for the OUT, or input
from the data lines D7-D0 for the IN.

External /O devices are designed to expect this sequence.
If the I/O device senses that an I/O instruction is being
executed (there is another signal line that performs this
function), it reads the address lines to determine if it’s
being addressed. If it is, it either reads in the byte of data
from the data lines or sends back a byte of data to the data
lines.

213



Hints and Kinks 10-2
1/0 Mapped I/0 Signals

The actual sequence for I/0 mapped I/0 goes
like this: The usual I/0 cycle is three
cycles: Tl, T2, and T3. The ‘‘port address''
is put on address lines AO—-A7 during T1l. Next,
at about T2, the TRS-80 OUT* or IN* signal
{one or the other) goes to zero. Each is on a
separate line. IN* signifies that an IN
instruction is being performed, and QUT*
denotes an OUT instruction.

If an input is being done and if an external
devices's address is on the address bus, it
responds by placing a byte of data on the data
bus lines D7-D0. The byte is input to the CPU
register at about T3.

If an output is being done and if an external
device 1s being addressed, the device
''strobes in'' the data byte on D7-D0O in T2 or
T3. The data was placed on the data lines
sometime in T1.

Since there may be 256 separate port addresses (I/0
addresses in the I/O instructions), there may be as many
as 256 separate I/O devices, all looking for their address on
the address lines so that they can perform their built in
function of reading or writing one byte of data. In practice,
there are probably only one or two devices hooked up to
any microcomputer system.

Most TRS-80 Model I systems have only two devices. One
is the cassette read/write logic (address OFFH), and the
other is the RS-232-C interface board (addresses 0E8H
through 0EBH). Although these are somewhat integrated
into the TRS-80 system, they are truly external devices
viewed from the standpoint of the Z-80 microprocessor.

Model III systems also use cassette and RS-232-C port
addresses, but use a number of other ports for disk and
system operations.

214



Memory-Mapped /O

The second type of I/O that we can have in the TRS-80 is
memory-mapped I/0. Here, the external device is still
looking for an address on the address lines, but all address
lines A15-A0 are used. In this case, the external device does
not look for a signal that says “I/O instruction being
executed” together with its address, but simply looks for
its address. As 16 address lines are being used, 65536
separate addresses could be employed.

Hints and Kinks 10-3
Memory—-Mapped 1/0 Signals

As in I/0 mapped I/0, this sequence usually
takes place in 3 T cycles. First of all, the
CPU puts the device address onto the address
bus lines Al5-A0 during the Tl cycle. If the
device is being addressed, it now looks at
signals WR+ and RD=.

If an input is being done. signal RDx* goes low
(0) during T2. An external device responds to
its address and RD# by placing a byte of data
on data bus line D7-D0O. If an output is being
done, signal WR« goes low during T2. An
external device responds to a WRx and address
by '‘strobing in'' the data on lines D7-DO.
The data was placed on these lines by the CPU
sometime in T1.

Note that in this type of addressing, the WR«
and RD+x signals are generated by instiructions
such as LD (HL),A for an output (WR+) and LD
(nn),A for an input (RD«)}. The I/0 device
looks identical to a memory location in this
mode .

The catch in the above is that some of the addresses are
also used for memory! In this type of I/O, there must be a
decision by the system designer on how to divide up the
64K worth of addresses into memory and I/O addresses.
This division in the TRS-80 is shown in Figure 10-2, which
shows the memory mapping for the TRS-80.

215



ADDRESS
(HEX)

4

JPBIH

THIS AREA ALLOCATED
FOR /0 ADDRESSES
3000H-3BFFH (MODEL I}
OR USED PARTIALLY FOR
ROM (MODEL i)

3cEPH - IFFFH
4PBTH

8@ggu

CEBBH

FFFEH

Figure 10-2. TRS-80 Memory
Mapping For /O

Of course, as we know, many of the addresses in the
TRS-80 are devoted to video memory (addresses 3C00H
through 3FFFH). In fact, this is very similar to regular RAM
memory. Other memory-mapped addresses, however, are
the system line printer (37E8H), and (in the Model I) the
disk controller chip (37E0H, 37ECH through 37EFH), and
the cassette latch in the expansion interface (37E4H).

To address any of these addresses on a read, we simply
perform any memory reference instruction, such as LD
A,(37E8H) or LD B.(HL). To address any of the addresses on a
write, a store is done as in LD (37E8H),A or LD (HL),.C. The
memory reference instruction, of course, transfers one byte
of data between the external (to the Z-80) I/O device and a
CPU register.

Just about all I/O operations in the TRS-80 are performed
one byte at a time by using either an I/O instruction in 1/0
mapped I/O, or by using a memory reference instruction in
memory-mapped I/O. (Even disk operations are performed
one byte at a time.)

216



Hints and Kinks 10-4
Other Types of 1/0

We haven't talked about several other possible
types of I/0 in the TRS-80 for a good reason —
they are not used in standard TRS-80 devices.
However, let's mention them anyway, as the
provision is there in the TRS-80 as far as bus
signals.

The first of these is DMA, direct memory
access. In this type of I/0, 8-bit I/0
transfers are made directly to and from memory
by the I/0 device controller, bypassing CPU
registers. During each transfer, the CPU is
tilocked up'’' and the device controller uses
the bus lines in a '‘cycle-stealing’' mode.
This type of I/0 is common for very high-speed
devices where a software loop can not furnish
the data at high enough rates.

The second type of I/0 is the interrupt—driven
I/0. This type of I/0 is usually used with
slow—speed devices. Each byte (for example, a
keypush) generates an interrupt to the CPU,
which causes an interrupt—-processing routine
to be entered. The interrupt-processing
routine contains normal I/0 instructions to
read in or write out the data. The advantage
of this type of I/0 is that normal processing
can be maintained until the interrupt occurs
without any polling or overhead in testing the
1/0 device for the next byte.

Parallel Printer Operation

The system parallel printer uses memory-mapped I/O with
an address of 37E8H. The expansion interface in the Model
I or printer logic in the Model III decodes this address
and passes data either to the printer or from the printer,
as shown in Figure 10-3.

217



l
i
STATUS FROM PRINTER l

IN EXPANSION INTERFACE

{

GATING

AAA

—

8-BIT

LATCH

\AAA

SYSTEM PRINTER

DL.
D&

FROM/TO
cPU ')
REGISTER 2
1
Do

|
|
I
|
|
5
!
l
|
|
|

WRITE
TO PRINTER

.
l

Figure 10-3. Parallel Printer Logic

Printers used on the TRS-80 use a somewhat standard
interfacing specification called the Centronics bus. This
specification defines the set of lines used to transfer the
data and the signals for handshaking, timing, and signal

levels.

The handshaking logic for parallel printers goes
something like this. The CPU performs a memory-
reference read instruction to read a byte of data from the
printer controller logic. This byte is a status byte, as
shown in Figure 10-4.

READY

PAPER

ON LINE

NO FAULY

“NORMAL" = () (] 1 1 1 1 1 1
ouT UNIT
BUSY PAPER |SELECT FAULT 1 1 1 1
e J
Vo
ALWAYS ONES
L OIF FAULT: 1IF NOT FAULT

@ [F UNIT OFF LINE; 1 IF ON LINE

@ IF PAPER OK; 1t OF OUT OF PAPER
@ IF NOT BUSY{READY}; 1 {F BUSY

Figure 10-4. Printer Status Byte

218



The status byte normally contains several bits indicating
“fault” conditions for the printer — printer out of paper,
off-line, etc. It also contains a bit known as a ready bit.

The ready bit signifies that the printer is ready to accept
the next byte of data to be printed. In an unbuffered
printer, the printer is busy (not ready) during the time
the character is being printed, and the ready bit is not set.
After the character has been printed, the ready bit is set
by the printer electronics. This situation is shown in

Figure 10-5.
PRINT STRING = “TRS-80"

PRINT “T" PHINT “R"” PRINT S
. ‘a N~ 1
BUSY I
)
READY — 1
0

Figure 10-5. Ready/Busy Status

In a buffered line printer, the printer may receive the
next byte of data to be printed while the printer is in the
process of printing. The character is stored in a buffer
memory within the printer. Of course, if the printer is
printing at a rate of 100 characters per second and the
program is outputting characters at rates of 50,000
characters per second, it doesn’t take too long for the
buffer to become filled up. In this case, the ready bit is
reset until one or more characters have been read out of
the buffer and printed. Almost all current line printers are
of the buffered type.

Figure 10-6 shows a typical line printer driver program
from the MORG program of Chapter 14. The status is first
read from the printer controller logic by a LD A,37E8H).
The status bits are ANDed with 0F0H to mask out the bits
from the other bit positions; they contain ones as they
connect to nothing for a read from the printer. The other
four bits are BUSY, OUTPAPER, UNIT SELECT, and FAULT. If
the result is other than 30H, the printer is busy or has a
fault condition, and a jump is made back to the read status
instruction.

219



Hints and Kinks 10-5
Other Line Printer Characters

If the line printer is very complex, there may
be a variety of ‘'‘control codes'' with special
meanings that can be output. First of all,
there are carriage returns (ODH) and line
feeds (OAH). Most printers also have a '‘top
of form,'' which advances the paper to the
next page (OCH).

Another common control code is the '‘BEL'"’
code {07H) which literally rang a bell on
early teleprinters; on modern line printers it
usually sounds an electronic alarm.

Depending upon the printer, you may have codes
for such things as underlining, setting
vertical spacing, and setting horizontal print
density.

On character—oriented printers — such as the
Diablo, Qume, and NEC — you have a whole set
of special !‘'escape sequences'' that control
such things as horizontal and vertical spacing
in fractions of an inch, vertical and
horizontal tabs, and ribbon selection. These
sequences are not single codes but are a
series of characters, many times started by an
‘‘escape'' character (1BH). If these printers
are to be utilized to their fullest advantage.
the printer software driver must make
provision for outputting such sequences: this
may increase the task of writing an
assembly-language driver by a factor of ten or

more!
05390
05400 ; LINE PRINTER STATUS AND PRINT CHARACTER SUBROUTINE
05410 3
83AF F5 05420 LPSTAT PUSH AF iSAVE CHAR
83B0 3AE837 05430 LPSO10 LD A,{37E8H) ;GET STATUS
83B3 E6F0 05440 AND OFOH ;MASK OUT GARBAGE BITS
83B5 FE30 05450 cp 30H ;TEST FOR BUSY
83B7 20FT 05460 JR NZ,LPSO10 ;GO IF BUSY
83B9 Fi a5470 POP AF ;RESTORE CHAR
83BA 32EB37 05480 LD (37E8H),4 ;OUTPUT
83BD C9 05490 RET ; RETURN
Figure 10-6. Line Printer Driver

Program
220



If the line printer is ready, the ASCII character is retrieved
from the stack and output to address 37E8H by an LD
instruction. All data output to the printer must be ASCII
data, except for possible special control codes unique to the
printer. (A BEL code of 07 would sound an alarm, or a code
of 29 might select 20 characters per inch spacing, for
example.)

Of course, the line printer driver shown above is the
lowest-level subroutine for communication with a system
printer. There may be others above it that control message
output, format lines, and so forth. This simple protocol is
typical of many peripheral devices such as line printers,
paper tape readers, and card readers.

Cassette I/0

The cassette controller is contained in the CPU logic.
Like the printer controller, it contains logic to decode its
address and to transfer data between a CPU register and
the I/O device. While the printer controller uses memory-
mapped I/O addressing, however, the cassette logic uses
1/0 mapped 1/0 via IN and OUT instructions. The cassette
logic is shown in Figure 10-7.

| CPU BOARD | CASSETTE
| LOGIC | RECORDER
|
TO CPU 4{__ ONE-BIT | COMPARA- l FROM CASSETTE
RES:?'I"ER LATCH | TOR - | AUDIO OUTPUT

|

t RESET ON 1/O ADDRESS
QFFH, WRITE l
SET ON NEXT 1 8IT i

BIT 0

—BT9 . &ime »| VOLTAGE
crom ———>| BIT! »-| LEVEL —L’I P
cPu — ! BIT2 P

|
3 TO CASSETTE
meaister | {3 51 BIT3 _-—1 RELAY "i"l hiAse s bt
' 32/64 |
; CHARACTER
MODE |
‘ /O ADDRESS !
! OFFH, |
WRITE
| “LATCHES” BITS |
NOTE: MODEL | CONFIGURATION SHOWN,
MODEL 1l CONFIGURATION SIMILAR

Figure 10-7. Cassette Logic
221



Cassette OQutput

When an OUT (OFFH),A or similar instruction is done, the
four least significant bits in A (or another CPU register)
are transfered to the cassette latch shown in Figure 10-7
for the Model 1. The latch is really a four-bit memory cell
that retains the data until rewritten. The logic for the
Model III is similar, but not identical.

Bit 3 of 'the latch (Model I) controls the 32/64 character
mode for the display. Bit 2 of the latch (Model I) controls
the cassette relay that would normally be used to turn the
cassette motor on and off. Bits 1 and 0 (Model I and III)
generate a signal level to the cassette input for writing on
cassette. Three signal levels are possible, as shown in
Figure 10-8.

“POSITIVE-GOING”

PULSE
“STATIC' LEVEL

LEVEL 1 i
LEVEL 2 —— —
LEVEL 3 ~—

“NEGATIVE-GOING™
PULSE

LEVEL1 = XX01IN CASSETTE LATCH
LEVEL 2 = XX00 IN CASSETTE LATCH
LEVEL 3 = XX13 IN CASSETTE LATCH

Figure 10-8. Cassette Output
Levels

To write on cassette tape, a series of pulses are generated
as shown in Figure 10-9. The separation between the
pulses is 1 millisecond. The width of each pulse is 250
microseconds, divided into 125 microsecond segments.

222



<« 1 MILLISECOND —— 3 DATA
PULSE
( 4" SHOWN-PULSE

NOT PRESENT IF “g
cLOCK
PULSE
125
F|seC ‘1.25
b =MICRO
wsec [T ’
o cLock g cLoCK g cLocK

NOTE: 500 BAUD MODEL Vil SHOWN

Figure 10-9. Cassette Pulse Formats

There are two pulses for every data bit. Each set of two is
divided into a clocking pulse and a data pulse. There is
always a clocking pulse. If there is a data pulse at the 1
millisecond time, a “1” bit is generated. If there is no data
pulse, a “0” bit is produced, as shown in the figure.

Prior to the generation of pulses, of course, the cassette
must have been turned on by a 0000X100 output, which
turns on the cassette relay; the X represents the current
state of 32/64 character mode (Model I), which must be
retained. The positive portion of the cassette is produced
by outputting a binary 0000X101, and the negative portion
by a binary 0000X110. The reference level is produced by an
output of 0000X100.

The normal sequence for writing to cassette is to turn on
the motor, write a string of 255 bytes of zeroes (2040 bits
of zeroes), and then write a sync byte of 0A5H. This really
amounts to turning on the motor and then writing zeroes
for 2040+2 milliseconds=4.08 seconds, following with a
sync byte. The sync byte is detected in the software read
cassette routine and marks the start of all data (and the
end of the zero header).

223



Cassette Input

The cassette read logic consists of a one-bit read latch and
comparator logic. The software read cassette routine reads
one bit from the cassette at a time. This bit is read into bit
7 by performing an IN A,(OFFH) or similar instruction. If the
bit is a zero, there is no pulse present from the cassette
input; if the bit is a one, there is a pulse present.

The following discussion applies to 500-baud cassette rates
in the Model I, but is very similar for Model III operations.

The normal read cassette operation begins with turning
the cassette motor on. The cassette read latch is cleared by
an IN (OFFH),A (A may have any data). Next a series of IN
AOFFH) instructions is executed until a one bit is read.
This is the start of the clocking pulse. Then a delay about
500 microseconds. This puts the cassette tape past the
clock pulse. Then the cassette latch is reset by an IN
(OFFH),A. Now another 850 microseconds delay occurs.
We're now positioned past where the data pulse should
have been. If a data bit had been present, the read latch
would now be set. If there is a one after reading the latch
by an IN A,(0FFH), the data bit was a one, otherwise the
data bit was a zero. After this sequence, the entire process
is repeated for the next data bit. Figure 10-10 shows the
operation.

IN A, (FFH) EXECUTED A DATA PULSE

UNTIL *1" READ QJOA:I%%SECONDS AT 1 MILLISECOND
xa CLOCK CLEAR READ LATCH SETS READ LATCH
BY OUT (6FFH), A
PULSE DATA

v I PULSE (OR NONE)

. ABOUT 5
506 L.SEC
< ABOUT 1350 =
pSEC !
assere A
BY IN A, (8FFH}
.\ BIT 7S AONE
NOTE: g?iao‘ﬂﬂ;\h:lb MODEL ¥} IF THERE WAS A

DATA PULSE, 0
iF NOT

Figure 10-10. Cassette Read Timing
224



The first data bit to be read will be bit 7 of the 0A5H sync
byte (or noise). After the entire 8 bits of the sync byte have
been read and verified, the cassette software driver is
“synced” to the data and can assemble the bytes of the
cassette record from the individual reads.

It’s entirely possible to write your own cassette I/O
routines from the ground up, addressing the cassette write
and read latches. However, there are ROM calls available
in the EDTASM manual that you may use to perform the
next level of byte-oriented operations. The calls are:

* Define drive and turn on motor
* Turn off motor

» Write leader and sync byte

» Write byte

* Read leader and sync byte

* Read byte

Hints and Kinks 10-6
High-Speed Tape Operations

Since the cassette tape is primarily software
driven, is it possible for you to speed up the
cassette data transfer rate? The answer is in
the qualifier ‘'primarily.'' It is certainly
possible to write assembly~language code to
write and read cassette at 1000 baud or
higher. However, since these frequencies have
an entirely different set of electrical
characteristics and the cassette electronics
are designed to work well with the standard
baud rates, a higher—speed cassette driver
would be a dicey thing at best. Best to invest
in that disk than in an experimental 19,200
baud cassette tape driver!

Define Drive, Motor On, Motor Off

A CALL to location 212H with the A register containing a 0
or 1 selects cassette 0 or 1 and turns on the motor. A CALL
to location 01F8H deselects the cassette and turns the
motor off.

225



Read Cassette

A CALL to location 0296H looks for the leader of 255 zeroes
and the sync byte of 0A5H. It returns after a sync byte has
been read. If no sync byte is read, it “hangs,” looking for
the elusive 0A5H. After this call has been made, a CALL to
0235H will read in the remaining bytes in the cassette
record. A byte is returned in the A register.

Write Cassette

A CALL to location 0287H writes the leader and sync byte.
A CALL to location 0264H with a data byte in A writes one
byte of data.

The above routines may be used in any fashion to create
your own tape data formats or to work with existing data
formats. All tape operations will be at 500 baud (500 data
bits per second) rates. For example, the size of records is
normally less than 256 bytes. You may construct your own
assembly-language routines to block more than one
logical record into one physical record.

Figure 10-11 shows an assembly-language routine to write
and read video display data in 1024-byte records by
utilizing the ROM calls above. This is a relocatable
program and is incorporated into the Level II BASIC
program shown in Figure 10-12.

TF00 00100 ORG 7F0CH
00110 :iiillll!ll§I!iilIl!I!l!!!llll!lll!ll!l!il’ll!lli!lllllii
00120 % CASSETTE/VIDEO DUMP/READ ROUTINE ®
00130 :% DUMPS SCREEN TO 1024-BYTE CASSETTE RECORD. READS #
00140 ;® BACK RECORD AND DISPLAYS ON SCREEN. #
00150 :;* ENTER AT "WRITE" TO DUMP, "READ"™ TO READ BACK #
00160 ;i!laillii{lllii;l&l»lllllil5-!l!iall&!;!i&l!lin!iiil!l;i
00170
00180 ; SCREEN DUMP

7F00 F3 00185 WRITE DI sDISABLE RTC

TFQ1 AF 00190 XOR A iSELECT CASSETTE O

7F02 CDh1202 00200 CALL 2124 :TURN ON

7F05 CD8702 00210 CALL 287H JWRITE LEADER

7F08 21003C 00220 LD HL,3C00H ;s SCREEN START

7F0B ES5 00230 WRT010 PUSH HL ;SAVE PHTR

7F0C 7E 00240 LD &, (RL) :GET VIDEO MEMORY BYTE

7FOD CD6LO2 00250 CALL 264K ;WRITE TO CASSETTE

7F10 E1 00260 POP HL ;GET ADDRESS PNTR

TF11 23 00270 INC HL ;BUMP PNTR

TF12 7C 00280 LD A,H sGET MS BYTE

7F13 FE4O 00290 cp 40H ;TEST FOR 4000H

7F15 20F4 00300 JR NZ,WRT010 ;GO IF NOT END

TF17 CDF801 00310 WRT020 CALL 1F8H ;TURN OFF CASSETTE

TF1a C9 00320 RET 1 RETURN
00330 ; READ CASSETTE RECORD

TF1B F3 00335 READ DI sDISABLE RTC

226



TF1C AF 00340 XOR A SELECT CASSETTE ©

7F1D CDh1202 00350 CALL 128 ; TURN ON

TF20 CDg602 00360 CALL 2968 ;READ LEADER

7F23 21003C 00370 LD HL,3CO0H iSCREEN START

TF26 ES 00380 REA010 PUSH HL ;SAVE PNTR

7F27 CD3502 00390 CALL 235H sREAD BYTE

TFz2a E1 00400 POP HL ;GET ADDRESS PNTR
TF2B 77 00410 LD (HL), A i STORE BYTE ON SCREEN
TF2C 23 00420 INC HL iBUMP PNTR

7F2b 7C 00430 Lp Ay H sGET MS BYTE

TF2E FE40 00440 cp 40H s TEST FOR 4000H
TF30 20F4 00450 JR NZ,REAQ1Q ;GO IF NOT END
7F32 18E3 00u60 JR WRT020 1END ACTION

0000 00470 END

00000 TOTAL ERRORS

Figure 10-11. Cassette/Video
Program

50 CLEAR 100

100 'BASIC ROUTINE WITH EMBEDDED VIDEO/CASSETTE PROGRAH
200 A4$=STRING§(52,n#rm)

300 B=VARPTR(AS$)

4500 B=PEEK{(B+2)®*256+PEEK(B+1)

500 FOR I=B TO B+51

600 READ &

700 IF I>32767 THEN POKE I1-65536.A ELSE POKE I,A
800 MNEXT I

G600 INPUT "READ(R) OR WRITE(W)";A$

1000 C=B

1100 IF as=""" GOTO 1300

1200 C=C+27

1300 POKE 16526 ,C-INT{(C/2561%256

1400 POKE 16527, INT(C/256)

1500 INPUT "READY CASSETTE, HIT ENTER";A$

1600 X=USR(0)

1700 GOTO 900

2000 DATA 243,175,205,18,2,205,135,2,33,0,60,229,126,205,100,2
2100 DATA 225,35,124,254,64,32,244,205,248,1,201,243,175,205,18,2
2200 DATA 205,150,2,33.0,60,229,205,.53,2,225,119,35,124, 254,64
2300 DATA 32,244,24,227

Figure 10-12. Cassette/Video
BASIC Driver

Cassette Music

As most of you know, the TRS-80 cassette latch is being
used to generate musical tones ranging from Morse code to
four-voice fugues. The music generated is a constant-level,
square-wave tone produced by toggling the cassette
output bits on and off.

In the simplest case, this involves turning on a positive
pulse by 01 and then turning on a negative pulse by 10-
bits, as shown in Figure 10-13. The CON subroutine from
Chapter 14, for example, toggles the two bits by XORing
the current configuration of the bits with 3, which
alternates between writing 01 and 10 (see Figure 10-14).

227



61 LEVEL

00 LEVEL

16 LEVEL

833D
833F
8340
8343
8345
83u7
8348
8348
834E
8351
8352
8353
8355

3E01
2B
O1FFFF
EEO3
D3FF
ES
210100
cDCo85
Cb2984

(NOTE: THE TWO PORTIONS OF THE PERIOD

04530

ONE CYCLE
ONE PERIOD

1

FREQUENCY (CYCLES/SECOND OR HERTZ)=

PERIOD (SECONDS)

DO NOT HAVE TO BE OF EQUAL

LENGTH}

HL CONTAINS A “DURATION COUNT"

Figure 10-13. Cassette Square Wave

04540 ; ON\HERE - GENERATE 500 HERTZ TONE

04550
04560 CON
04570
04580
04590 ONO10
04600
04610
04620
04630
o440
04650
04660
04670
04680

LD
DEC
LD
XOR
ouT
PUSH
LD
CALL
CALL
POP
ADD
JR
RET

A,01
HL
BC,-1

3
(OFFH) A
HL

HL, 1
DELAY
INPUT

HL

HL,BC
C,0N010

;ON
;ADJUST FOR "JR C"
;DECREMENT
i TOGGLE
sOUTPUT TO CASSETTE LATCH
1SAVE COUNT
;FOR 1 MS
;DELAY 1 MS
;GET POSSIBLE CHARACTER
;GET COUNT
;DECREMENT COUNT
;G0 IF ROT -1
{RETURN

Figure 16-14. CON Routine

The delay between the outputs is accomplished by calling
the DELAY subroutine, which delays 1 millisecond. As the
total period of the cycle is 2 milliseconds, a 500 hertz tone
is produced for the Morse code dots and dashes. A duration
count in HL is decremented down to zero to generate the
tone for a given length of time.

228



In general, what range of tones can be generated by using
this method of producing sounds? Producing low tones is
no problem because we can delay as long as we wish
between toggling the cassette latch output. (Of course, the
fidelity of the output on either high- or low-frequency
tones is another matter.)

The problem here is in producing high-frequency sounds.
To do this, we must keep a “tight” loop in the code to
toggle the cassette latch between positive and negative
pulses. As we're talking about a general case “tone
driver,” we need some means to vary the period to produce
different notes.

About the tightest loop that can be used is:

LD 01 sBIT CONFIGURATION
LOOP1 LD B.C sGET DELAY COUNT

ouT (OFFH) »& TOGGLE ONE WAY
LOOPZ DJNZ LOOPZ iDELAY

HOR 3 FINVERT BITS

JP LOarP1 sCONTINUE

This takes a delay count in C and puts it into B for each
one-half cycle. Either a 01 or 10 is then output to the latch
at OFFH (the motor bit and mode select will be zeroes). The
count in B is then decremented down to zero, the bit
configuration is inverted, and the process is repeated.

The frequencies that you can produce by this code are easy
to figure out. The instructions from LOOP1 through the JP
LOOP1 take 2.3, 6.2, 7.3/4.5, 3.9, and 5.6 micro-
seconds, respectively. (We took the T cycle times in the
EDTASM manual and multiplied by .56 to get the times in
microseconds.) The 7.3/4.5 microsecond time represents
the DINZ time for B<>0 and B=0. The total period for any
count in C, is therefore:

PERIOD (microseconds)
=S (2:.3+6+2+(CNT-1)%7.3+4.,5+3.8+5,6) %7
= 43 + 2%CNT

The maximum frequency would be for a minimum period

229



when CNT=1, which would be a period of 45 microseconds,
representing about 22,000 cycles per second (hertz). The
minimum frequency would be for a CNT of 0 (256) and
would be a period of 555 microseconds for a frequency of
1800 hertz.

There are several problems with this routine. First of all,
we need more than just a continuous tone; we need some
way of terminating! That means that we must maintain
another count for duration. This count is also necessary to
produce different durations for musical notes, if we want
to implement a full-fledged music program.

Secondly, it appears that we need to keep a larger count in
16 bits for lower frequency notes. The lowest frequency
here is 1800 hertz, which is much too high.

There’s also another problem, which is not readily obvious.
The frequency resolution may not be fine enough. The
difference in frequencies for a CNT of 200 and 201 is about
10 hertz. This will probably become more pronounced as
we add more overhead to the loop.

Hints and Kinks 10-7
Other Tone Parameters

A full-fledged music synthesizer should
include some means to control the volume of
the output for '‘envelope generation'' or just
plain dynamics. About the best we can do with
the cassette output on the TRS~80 is to
program two levels — one from the 10 level to
the 01 level (low to high) and one from the 10
level to the 00 level (low to reference).

Another parameter that has some interesting
effects, however, is the '‘duty cycle'' of the
square wave. We've been working with a
50%-on/50%—0off square wave here. However, the
harmonic content of square waves will vary
with the proportion of on to off time, and you
might want to experiment with this parameter
as an input for the TONE routine (keeping the
period constant).

230



All this means is that producing musical tones via the
cassette port is a compromise (even at best) between range
of notes and resolution.

The program in Figure 10-15 is an attempt to produce a
wide range of musical notes with good resolution by using
two separate routines within the one subroutine, one for
high frequencies (HIFREQ) with low overhead and one for
low frequencies (LOFREQ) with high overhead.

FFOO

06002
0002
0001
FFOs5
FFO6
FFO9
FFOD
FF10
FF11
FF13
FF14
FF16
FF17
FF18
FF1B
FF1C
FF1E
FF21

FF22
FF25
FF28
FF2B
FF2D
FF2F
FF30
FF33
FF36
FF38
FF3A
FF3B
FF3E
FF40
FFu43
0002

FF46
FFug
FF4a
FFEC
FF4E
FF50
FF51
FF53
FF55
FF57
FF58
FF5B
6000

F3
2A00FF
CD4EQ2FF
3AQ04FF
B7
2009
ES
DDE1
cs

E1t
CD22FF
cg
0600
CDY4SFF
c9

2244 FF
T1FFFF
2AULFF
3EO01
D3FF
19
DA2FFF
2AH4FF
3E02
D3FF
19
DA3AFF
DD19g
DA28FF
c9

11FFFF
41
3E01
D3FF
10FE
1
3E02
D3FF
10FE
19
DA4QFF
c9

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00215
60220
00230
00240
00250
00260
00270
00280
00290
G60300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
004 ko
00450
00460
00470
00480
00490
00500
00510
060520
00530
60540
060550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660

06000 TOTAL ERRORS

Figure 10-15. Cassette TONE

ORG
A R NNt st

:* GENERATES HIGH OR LOW FREQUENCY RANGE OF TONES. SYHM-

(BC)=FREQUENCY COUNT FROM EXTERNAL TABLE

*
#
(HL)=DURATION IN # CYCLES AT FREQUENCY *
*
*

(A)=0 IF UP TO 300 HERTZ, 1 IF ABOVE 300 HZ
Ha AR L LR NI

;DURATION POKED BY BASIC
;FREQ CNT POKED BY BASIC
iFLAG POKED BY BASIC
iDISABLE RTC

iGET DURATIGH

sGET FREQ COUNT

;GET FLAG

;TEST HIGH,LOW

;GO IF HIGH

sDURATION TO IX

;FREQ CNT TO HL
iGENERATE TONE

sCLEAR B OF BC
yGENERATE TONE

;STORE FREQ CNT(16)
iDECREMENT(10)
sGET FREQ CHNT{16)
sHIGH PULSE(T)
sTURN ON(11)
;DECREMENT F CHNT{11}
36O IF NOT ~1{10)
iGET FREQ CNT((16}
+LOW PULSE(T)
s TURN OFF(11)
iDECREMENT F CNT{11}
GO IF NOT -1(10)
DECREMENT DURATION(15)
1GO IF NOT -1(10)
sRETURN(10)
; TEMPORARY STORAGE

s DECREMENT(10)
GET FREQ CNT(4)
sHIGH PULSE(T)
JTURN ON(11)
iGO IF NOT 0(8/13)
:GET FREQ CNT(4)
;LOW PULSE(T)
;TURN OFF(11)
;GO IF NOT 0(8/13)
s DECREMENT DURATION(11)
;GO IF NOT -1(10)
RETURN(10)

OFFOOH
B TONE GENERATOR
:® ETRICAL SQUARE WAVE THROUGH CASSETTE OUTPUT.
;% ENTRY:
;i
a!
DURA DEFS 2
FREQ DEFS 2
FLAG DEFS 1
TONE DI
LD HL,(OFFOOH)
LD BC, (0FF02H)
LD AL (OFFOuH)
OR A
JR NZ,TOHC10
PUSH HL
PGP IX
PUSH BC
POP HL
CALL LOFREQ
RET
TONO10 LD B,0
cALL HIFREQ
RET
i LOW FREQUENCY TONE GENERATOR
LOFREQ LD (FCNT) . HL
LD DE, -1
LOOPT LD HL,{FCNT)
LD At
ouT (OFFH), A
LOOP2  ADD HL,DE
Jp C.LOOP2
LD HL, (FCNT)
LD A2
ouT (OFFH) . A
LOOP3  ADD HL,DE
Jp C,L00P3
ADD IX,DE
JP C,LOOP1
RET
FCNT DEFS 2
; HIGH FREQUENCY TONE GENERATOR
HIFREQ LD DE,-1
LOOPY LD B,C
LD a.1
ouT (OFFH), A
LOOPS  DJNZ LOOPS
LD B,C
LD A2
ouT (OFFH), A
LOOPE  DJNZ LOOPE
ADD HL,DE
JP C,LOOPY
RET
END

Routine

231



Two values are used on entry. HL holds the “duration
count,” while BC holds the “frequency count.” The
frequency count FD represents the number of iterations
through either LOFREQ or HIFREQ to produce a desired
frequency. The frequency count FC for any tone less than
300 Hz. can be determined by

FC = (1/F-52.45 microsecs)/23.68 microsecs and for any
tone greater than 300 hz. by
FC=(1/F-31 microsecs)/14.66 microsecs

These formulas are found by adding up the instruction
times in the two routines (T cycle lengths are shown in
parentheses).

The duration count DC is simply a count of the number of
cycles for any frequency for a given duration in seconds.
(For one second duration, this is F cycles).

DC=D*F-1

The -1 represents the adjustment for the JP C
termination instead of termination on zero.

Typical values for F(frequency), D(duration), FC(frequency
count), and DC(duration count) are shown in Figure 10-16.

Frequency (Hz) Duration {Secs)  Timing Count Duration Count
100 .25 420,083 24
300 .28 225.261 T4
500 .25 134.311 124
700 25 95.3323 174
900 .25 T73.6774 224
1100 25 59.897! 274
100 S5 420.083 49
300 .5 225,261 149
500 ) 134.31 1 249
700 ) 95.3323 349
900 5 73.6774 449
1100 ) 59.8971 549
100 75 420.083 74
300 75 225,261 224
500 76 134,311 374
700 75 95.3323 524
900 7S 73.6774 6T4
1100 75 59.8971 824
100 | 420,083 99
300 I 225.261 299
500 ) 134.3i1 499
700 ! 95.3323 699
900 1 73.6774 899
1100 ! 59.8971 1099

Figure 19-16. Timing Count Vs.
2392 Frequency



Because these counts would be hard to “number crunch” in
assembly language, we’ve provided a BASIC driver to inter-
face to the TONE routine (see Figure 10-17). The driver
calculates FC and DC from a given frequency and duration
and calls TONE with FF00H,1H=DC, FF02H,3H=FC, and
FF04H=0 for a tone <300 hz. or 1 for a tone >=300 hz. It
would be relatively easy for you to produce musical note
frequencies and durations by adding to this driver.

100 'TEST DRIVER

200 D=.25

300 FOR F=20 TO 2000 STEP 10

400 GOSUB 10000

500 NEXT F

600 GOTO 600

10000 'TONE DRIVER. ENTER WITH F=FREQUENCY DESIRED, D=DURATION
10010 *'IN SECONDS DESIRED.

10020 IF F<300 THEN FC=(1/F-52.43E-6)/23.68E~6 ELSE
FC=(1/F-31E-6)/14 .66 E-6

10030 DC=D#F-1

10040 POKE &HFFOO,DC-INT(DC/256)%256

10050 POKE &HFFO1,INT(DC/256)

10060 POKE &HFF02,FC-INT(FC/256)%256

10070 POKE &HFFO03,INT(FC/256)

10080 IF F<300 THEM POKE &HFFO4,0 ELSE POKE &HFFO4,1
10090 DEFUSRO=&HFF0S

10100 X=USRO(0)

10110 RETURN

Figure 10-17. BASIC TONE
Driver

233






Chapter Eleven

Disk I/O in Assembly Language

We're going to look at another type of I/O device in this
chapter — the floppy disk drive of the TRS-80. We'll first
examine some of the physical and electrical characteristics
of the disk, look at TRSDOS file structure, and then look at
communication with disk data via assembly-language calls
to TRSDOS.

Diskette and Disk Characteristics

A diskette is a circular piece of mylar coated with a
ferro-magnetic material. As it comes from the
manufacturer, it’s unmagnetized with no data of any type
on it. There are no inherent tracks or sectors permanently
embedded in the magnetic medium.

The manufacturer usually certifies the diskette. This
certification process involves writing and reading back data
at high bit densities to verify that there aren’t any gaps or
flaws in the magnetic material that would cause loss of data.

There are two basic diskette formats, the hard-sectored
and soft-sectored. The TRS-80 uses a soft-sectored type of
diskette format. The hard sectored diskette has ten sector
index holes, while the soft-sectored diskette has one sector
index hole, as shown in Figure 11-1.

235



C :—‘ - ~ \
Vs >~ O N
/ AN
/ - T~ \\ SECTOR
VA NN e
/1 / \ \ )
C Sle ) |
\ Ow—/;’/
\ \ g g/
\ N /S8
\\ ~ 7 // /
\\ ACTUAL READ/ 7/ /
\\ ~ WRITE AREA P a4
S=-d-=7

!

PROTECTIVE
COVERING

Figure 11-1. Diskette Structure

The purpose of the sector index hole is to act as a reference
for the start of sector 0, the first sector of the ten sectors per
track for the Model I or 18 sectors per track for the Model I1L.
Each sector is filled with 256 bytes of data, making a total
track’s worth of data 2560 bytes (4608 bytes for the Model
I1I). Each diskette is normally divided into 35 tracks for the
Model I or 40 tracks for the Model IT, numbered 0 through 34
(39). The entire diskette can therefore hold 256035 = 893600
bytes of data (184320 bytes for the Model IID).

In addition to the data bytes in each sector, there’s header
and trailer data in the sector. This data contains the track
#. sector number, and checksum for the sector. In addition,
there is “filler” data preceding and trailing the ten sectors
worth of data, as shown in Figure 11-2.

236



“HEADER" DATA:
TRACK, SECTORID,
CRC, FILLER (25
BYTES TYPICAL) Note: Modet |

$ configuration shown.

TRAILER DATA
CRC, FILLER
{19 BYTES TYPICAL)

\

Figure 11-2. Disk Header/Trailer

All of this data is put on the disk by the formatting
program. The formatting program is a simple program that
you use to format the header, trailer, and filler data on the
diskette in preparation for storing actual data in the data
portion of each sector. You might visualize the action of the
formatting program as putting a “skeleton” of the sector
structure on disk. The formatting program simply stores 256
bytes of dummy data for the 256-byte data area in each
sector.

237



Hints and Kinks 11-1
How is Formatting Done?

You don't really want to format your own
disks, do you? All right, here goes .

Formatting simply involves positioning the
disk head to each of the 35 (Model I) or 40
(Model III) tracks and then issuing a ‘‘write
track'' command to the disk controller chip.
The write track essentially tells the
controller ‘‘here comes the data.'' The data
consists of ten sector segments and filler.
The sector segments contain special characters
that cause data address ‘'‘marks,'' ID address
marks, and CRC check bytes to be written. The
actual sequence is FE (ID address mark
action). track #, sector #. F7 (CRC action).
filler, data address mark, dummy user data
(256 bytes of E5), F7 (CRC action), and
filler, repeated 10 times.

The formatter program writes this data out one
byte at a time until the entire track has been
written.

Disk Drives

In order to locate a track, each 35- or 40-track disk drive
steps or positions a read/write head one discrete increment
for each track, as shown in Figure 11-3. There are no other
track references that the drive can read to find the proper
track; it has to step the head precisely for each increment toa
new track.

DISTANCE A

S PRECISE

DISTANCE “STEPPED"
BY READ/WRITE

HEAD OF DRIVE

READ/WRITE
HEAD

TRACK 31

TRACK 3¢

Figure 11-3. Disk Drive Operation

238



To perform this task, each drive has a stepper motor or other
positioning scheme that positions the head precisely. There
are three basic movements that each drive can perform: it
can restore the head to a position over track zero, it can step
inward one track; or it can step outward one track. The
software controlling the drive usually does a restore
operation initially, and then keeps track of where the head is
as it steps in and out over the various tracks. At any time,
however, it can always easily find track zero again by
performing a restore.

The disk drive motor turns at about 300 revolutions per
minute (5 revolutions per second). This means that data is
passing under the read/write head of the drive at about
2560=5 bytes per second (12,800 bytes per second) for the
Model I and about 46085 bytes per second (23,040 bytes per
second) for the Model III. Since the data is recorded serially
along the track, this amounts to a string of 102,400 (184,320)
bits recorded along each track. (In these figures we're
ignoring the header, trailer, and filler data, which actually
increases the data rate by 20% or so.)

Hints and Kinks 11-2
Disk I/0 Read/Write Timing
Considering that the data rate is about 12,800

bytes per second, that means a byte every 78
microseconds for the Model I. Since the data
is being written out a byte at a time in a
software timing loop, the loop itself must be
fairly **tight'' to ensure that it can get
back with the next byte in time. If you miss
that 78 microsecond ‘‘window.'' you end up
with the dreaded lost data condition. The ball
game is lost, at least for that sector. A time
of 78 microseconds represents, say. 15
instructions, so some efficiency in coding is
called for here, especially if real-time-clock
interrupt processing is occurring every 25
milliseconds or so! (RTC processing adds more
instructions.) For the Model III, the timing
constraints are even '‘tighter’' — about a
byte every 43 microseconds.

239



The disk drive is really a very dumb device. The signals
passing from the disk drive to the expansion interface are
shown in Figure 11-4. There aren’t very many. There are two
lines for WRITE DATA and READ DATA. Since the disk drive
reads and writes data serially along the track, data is passed
abit at a time in one direction or the other. There’s also a line
that passes a STEP command to the drive; associated with the
STEP line is a DIRECTION line which determines whether the
track step will be in or out.

DISK

wriTe paTa UL
-
READ DATA I LU

-
-

STEP

oy

EXPANSION
INTERFACE DIRECTION

WRITE ENABLE

= DISK
DRIVE MTR ENABLE DRIVE(S)

SELECT @

1

2

3

Y

INDEX

WRITE PROTECT STATUS

SIGNALS

TRACK @

A A |
R

NOT ALL SIGNALS SHOWN

Figure 11-4. Disk Signals

WRITE ENABLE must be in force to allow writing data to the
disk. You use DRIVE MTR ENABLE to turn on the disk motor
for a read or write and SELECT to select the drive and enable
the operation.

240



Signals coming back include the READ DATA line, and the
status signals INDEX (true when index hole passes under a
sensor), TRACK ZERO (true when the head is over track zero),
and WRITE PROTECT (true when the write protect diskette
notch is covered).

Hints and Kinks 11-3
Status Signals

Like other I/0 devices, the disk and disk
controller send back status so that the
program knows about disk conditions and about
the busy/read state for reads and writes. The
status byte for a positioning command such as
a restore command on the Model I would be

7 06 5§ 4 3 2 |\ @
NOT READY —J L— Busy
WRITE PROJECT —— INDEX
HEAD ENGAGED ————————— —— TRACK &
SEEK ERROR CRC ERROR
As a fun project, load the following BASIC
program to test '‘sector 0'' (index hole)

status for a Model I disk drive:

100 POKE 14304,1

200 A=PEEK(14316)

300 IF (A AND 2)=2 PRINT "SECTOR 0"
400 PRINT A

500 GOTO 200

The Disk Controller

As the disk drive is such a dumb device, intelligence for disk
drive operations must be incorporated elsewhere. Much of
the intelligence is in the disk controller chip in the
expansion interface of the TRS-80 Model I or the disk
controller logic of the Model III.

The disk controller chip is a small microprocessor in itself. It
handles all of the lower-level disk operations such as
e Converting 8-bit bytes into eight serial bits for writes

241



Assembling serial data into 8-bit bytes for reads
Restores (moving the head to track 0)

Stepping the head in or out

Seeks (finding a specified track)

Reading and writing tracks, including formatting data
Reading the “ID field” of a sector header

In doing all of these operations, the disk controller relieves
the software from controlling the timing and other
functions as in the cassette drivers.

The expansion interface of the Model I contains the disk
controller chip and some additional circuitry for disk drive
address decoding. A block diagram of this is shown in
Figure 11-5. There are two general sets of addresses
associated with the disk. Both are memory-mapped
addresses that are 16-bit values. (Memory reference
instructions are used in place of INs and OUTSs.)

DISK
DRIVE
SELECT
LOGIC
.
P 10 DisK(S)
DISK —
[CONTROLLER
T CHIP
ADDRESS
I7ERH T
ADDRESS
ENABLE
37ECH,37EDM,
AR 37EEH,37EFH
INTERFACE
OR DISK A
LOGIC

~§—— EI CABLE

cPU
BOARD

Figure 11-5. Disk Logic

242



One of the four possible disk drives on a TRS-80 Model I
system is “selected” by loading a register with a 1, 2, 4, or
8 and performing a write to memory location 37E0H. This
operation essentially turns the drive motor on for about
three seconds and enables other operations to take place.
A typical select of drive 0 would be

LD Al iFOR DRIVE 1

LD (37EQH) A SSELECT DRIVE oO0OT Fﬁ”/l‘(‘{
EYH A
The remaining addresses are 37ECH, 37EDH, 37EEH, and

37EFH.

These addresses are all associated with registers in the
disk controller chip. The general actions for each address
for a read or write are

ADDRESS READ ACTION WRITE ACTION

37ECH Read status Write command
37EDH Read track Write track
37EEH Read sector Write sector
37EFH Read data Write data

All communications from TRSDOS and other software are
done with the disk controller chip by issuing a series of
one-byte commands and by transferring one byte of data
between a CPU register and the disk controller chip.

For the Model III, the procedure is very similar, except

that the “memory-mapped” addresses have been changed
to I/0 ports of OFOH, OF1H, 0F2H, and OF3H.

243



Hints and Kinks 114
Some Disk Controller Commands

Commands available to the program for the disk
controller include eleven separate one-byte
instructions. These include five commands to
position the head: Restore puts the head over
track 0; Seek finds a given track; Step,
Step—In, and Step—-Out all move the head either
. in or out one track.

Read and Write are used to start the process
of writing one sector's worth of data. Prior
to the read or write, the head must have been
positioned over the proper track, and a sector
register must have been loaded with the sector
address. The read or write is followed by the
transfer of 256 bytes in a software loop that
looks for a status bit indicating that the
controller can accept the next data byte.

Read Address reads the track/sector address
(not often used). Read Track reads the entire
formatted track; Write Track writes (formats)
a track. Force Interrupt causes a software
interrupt.

Unfortunately, a large number of commands can be issued
to the controller chip with complicated actions and
responses — far too many to adequately cover in one
chapter. So we’ll give you a typical sequence of operations,
a flavor of how things are done in disk driver programs
that make up the lowest level of TRSDOS and other
programs that read and write data to the disk. Figure 11-6
shows the disk bootstrap program in Level II ROM. It first
tests to see whether a disk drive is connected to the
system, restores the disk head to track 0, and then reads
in the 256 data bytes of sector 0, track 0. This sector
contains a bootstrap program (BOOT/SYS) that reads in
the remainder of TRSDOS.

244



0696 00050 ORG 696H

0696 3AEC3T 00100 LD A, (37TECH) ;GET DISK STATUS

0699 3C 00110 INC A

069A FEOQ2 00120 cp 02

069C DATS500 00130 Jp C,75H 360 IF NO DISK

069F 3EO01 00140 LD A1 3 FOR DRIVE 1

06A1 32E137 00150 LD (37E1H),4 $SELECT DRIVE 1

06 Al 21EC3T 00160 LD HL,37ECH ; ADDRESS COMMAND

06AT 11EF3T 00170 LD DE,37EFH sDATA REGISTER ADDR
06AA 3603 00180 LD (HL},3 {RESTORE COMMAND

06AC 010000 060130 LD BC, 0000 ;DELAY 64K COUNTS

06 AF CD600O 00200 CALL 006 0H

06B2 CBY46 00210 LOOP1? BIT 0, {HL) ; TEST BUSY

06B4 20FC 00220 JR NZ,LOOPY :GO IF STILL BUSY
06B6 AF 00230 XOR A ;ZERO A

06B7 32EE37 00240 Lp (37EEH), A ;0 TO SECTOR REG

06BA 010042 40250 LD BC,4200H sMEMORY ADDRESS

06BD 3E8C 00260 LD 4,8CH ;READ COMMAND

06BF 77 00270 LD (HL), 4 ;READ SECTOR 0

06C0 CBLE 00280 fLOOP2 BIT 1, (HL) s TEST DRQ

06C2 28FC 00290 JR Z,L00pP2 ;GO IF NO DATA AVAIL
06CH 14 00300 LD A,(DE) :GET NEXT DATA BYTE
06C5 02 go310 LD (BC).A ; TRANSFER DATA

06C6 0C 00320 INC < ;BUMP BUFFER PNTR
06CT 20F7 00330 JR NZ,LOOP2 ;G0 IF NOT 256 BYTES
06C9 C30042 00340 JP 200H ; TRANSFER TO LOADER

0000 00350 END
00000 TOTAL ERRORS

Nots: Modet | Bootstrap LOOP TO READ 256
Shown. BYTES OF TRACK 0,
SECTOR @ INTO 4208H
AREA

Figure 11-6. Disk Bootstrap

TRSDOS Disk Organization

Actually there’s no need to write your own disk driver
routines for the TRS-80. There’re a number of TRSDOS
assembly-language routines that will handle almost all
disk operations you’d want to perform. These routines
incorporate not only code to perform rudimentary disk
operations such as reading a sector and restoring the head
to track 0, but code to perform disk file manage
operations on the TRS-80. Disk file manage refers to
operations to locate, read, and write disk files. We’ll
discuss all of these routines in detail, but first let’s look at
TRSDOS disk organization so that we may better
understand what is involved.

TRSDOS disk files are made up of from 1 to 32 granules. A
granule is five (Model I) or three (Model III) sectors and is
the minimum amount of space that TRSDOS allocates when
establishing a new file or adding to an existing file.

245



TRSDOS uses dynamic disc allocation that allocates only
enough (or slightly more) disk space to hold the current
number of granules in a file. Deleted files cause the disk
space used in the file to be released to the pool of disk
granules (there is a granule aliocation table or GAT that
is essentially a directory of which granules are in use and
which are in the pool of unused granules).

As you know from reading your TRSDOS manual, there
may be up to 48 separate user files on each diskette. A file
is simply a collection of records which are sets of any type
of data in some organized fashion. In practice, a file may
be spread over non-contiguous areas of the disk, but you
can use the file manage functions of TRSDOS to retrieve all
records associated with a file by reference to the file
directory on disk track 17. A typical disk map for the
Model I is shown in Figure 11-7.

TRACK ® ™ p5iSK BOOT |

1 ‘5SYS@’!

2

3 UTILITIES

4

5

6

7

8

9

10 | NOTE:

MODEL !

11 CONFIGURATION

2 | SHOWN.

13

14

15 |

16 “SYS” FILES

17 |DEDICATED TO SYSTEM
DIRECTORY

18

19

20 “SYS”’ AND
BASIC FILES

246



Figure 11-7. Typical Disk
Map

A physical record on disk is equivalent to a disk sector.
At the disk driver level, all disk files are read one sector at
a time, bringing in 256 bytes of data. However, within a
physical record there may be one or more logical records.

A logical record is the actual record used in data storage
and retrieval by the program. It may be 1 to 255 bytes in
length. Logical records-are blocked into physical records
(sectors) by the TRSDOS file manage routines. For example,
if you used 64-byte logical records to hold names and
phone numbers, four 64-byte records would be packed into
the sector physical record. One of the main tasks of the
TRSDOS file manage routines is to access the next logical
record from the proper physical record.

TRSDOS works with a buffer in memory. A buffer is an
area of memory set aside to hold the 256 bytes of a
physical record sector. When we’re working in Disk BASIC,
these buffer areas are preassigned to fixed locations in the
TRSDOS area; however, we can use our own areas, when
we're using the TRSDOS routines, as we shall see.

Device Control Blocks

Device Control Blocks are “working storage” areas of
memory dedicated to variables connected with a particular
I/O driver. Level II BASIC uses several DCBs connected with
keyboard, video display, and line printer operations; TRSDOS

247



uses additional DCBs for disk operations. In both cases the
location of the DCB is fixed. When we utilize the TRSDOS disk
file manage calls, however, we can place the DCBs anywhere
in memory we desire and pass the location of the DCB as a
parameter.

We may have as many DCBs as we require. For example, if
we are merging two files on disk into a third file, we could
have three DCBs, one for the “old master file,” one for the

“transaction file,” and one for the “new master file,” as
shown in Figure 11-8.

DCB1 <t

A
¥
¥

USER
PROGRAM

TRSDOS
FILE MANAGE
(70}
DISK  wtit—3] ROUTINES

A
¥
:
A
Y

Figure 11-8. DCB Use

Each DCB has two lives. Before the file operations are started
(OPENed) and after file operations are terminated (CLOSEd),
the 32-byte (Model I) or 30-byte (Model III) DCB contains the
file name in standard TRSDOS format, a carriage return, and
blanks, as shown in Figure 11-9. During file operations, the
TRSDOS file manage routines and the user communicate
(pass parameters) by using variables in the DCB as shown.

248



+
pce+0 pce+o RESERVED
2 2
3 3 BUFFER
" 2 ADDRESS
5 5 [CURRENT DELIM OFFSET
6 6 DRIVE #
7 FILENAME 7 RESERVED
8 PADDED 8 EOF OFFSET
13 TO 24 CHAR- 1% LRL
ACTERS NRN
1 with 1
:g BLANKS }g ERN
14 (20H) 14
15 15
16 16 RESERVED
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 (0DH) 24
25 25
26 26
27 27
28 8 BLANKS 28
29 (20H) 29
30 30
31 31
49 : (MODEL 1) 49 ; (MODEL i) ,
BEFORE AFTER OPEN
OPEN AND AND BEFORE
AFTER CLOSE CLOSE
Figure 11-9. DCB Format

During the file operations, the DCB bytes are used to hold
variables. The variables are put into the DCB by the TRSDOS
routines but may be examined by your assembly-language
code. Some of the variables are initialized from
user-supplied data, such as the buffer address.

Bytes +3 and 4 hold the buffer address for disk reads and
writes. The buffer may be anywhere in memory that’s
compatible with the configuration; without Disk BASIC, this

249



means anywhere above 6FFFH (Model I) or 6000H (Model
IID. If Disk BASIC is being used, follow the same rules about
assembly-language memory areas as you normally would
(see Chapter 4).

Byte + 5 holds a buffer displacement (or offset) of 1 to 255 to
the end of the current record. In other words, it’s an index to
the last byte of the current record. If, for example, you were
processing the second 64-byte logical record of a sector, this
byte would contain 127. During normal processing, you
would not employ this variable.

Byte +6 holds the file drive number of the disk drive being
used in the operation. Valid numbers are 0 through 3. This
constant is stored by TRSDOS from the file name of the DCB.

Byte +8 holds the buffer displacement (offset) of the last
delimiter of the last physical record. In other words, when
the last sector has been read in, this byte contains an index of
1 to 255 that points to the last byte of the file. Don’t use this
variable during normal processing.

Byte +9 holds the LRL, or logical record length. This
variable may be 1 to 255 and is put in by TRSDOS from
user-supplied data. If the LRL is 0, TRSDOS will assume the
user is blocking his own records and will not find logical
records for him (more about that later). This variable is
constant for the entire file.

Bytes + 10 and + 11 hold the NRN or next record number in
standard 16-bit format (Is byte followed by ms byte). This
variable is set to 000H by TRSDOS after the file has been found
initially (OPENed) or created (INITialized). It is incremented
by one by TRSDOS after each read for sequential files, or you
may change it for random files.

Bytes + 12 and + 13 contain the ending record number of the
current file in standard 16-bit format. This represents the
last logical record number of the file.

Byte +0, +1, +2, +3, +14, +15, +16, +17, and + 18 are
“reserved,” which is a polite way of saying, “Don’t tread on
me!” They should not be altered by the user.

250



TRSDOS /O Calls

Now that we know how the DCB is set up, let’s look at the
sequence and setup for TRSDOS I/O calls. There is an
excellent write-up of the calls in the TRSDOS/Disk BASIC
Reference Manual, so we won’t repeat the formats here.
There are eight calls for the Model I and seventeen calls for
the Model III. We'll consider the “subset” of eight Model I
calls here:

Call Action
INIT Initialize a new file

OPEN “Open” an existing file
POSN Positions a file to read or write a random
record

READ Reads one logical record from disk or buffer
WRITE Writes one logical record into disk or buffer
VERF Verifies a physical record

CLOSE “Closes” an opened file

KILL Closes a file and deletes it from directory

In general, all of these calls are made by CALLing a TRSDOS
routine in the 44XXH area. In all calls, the DE register holds a
pointer to the first byte of the DCB. HL and B or BC may also
hold a parameter depending upon the call type. For all calls,
after the call is made, a successful action returns with the z
flag set. If the z flag is not set on return, an error has
occurred and the A register contains an error code. Error
codes for TRSDOS I/O calls, along with probable causes, are
shown in the TRSDOS/Disk BASIC Reference Manual.

Reading an Existing I/O File
The normal sequence to read an existing file is this:

1. Put the file name in standard format into the DCB.

2. Make an OPEN call. This causes TRSDOS to search the
directory and find the file.

3. Ifthe file is a sequential file, perform a series of READs
of the next logical record until the last record (ERN or
ending record number) has been processed. If the file is
a random file, perform the READs after a POSN call for

251



each READ. The POSN uses the desired NRN (next record
number) in the DCB to find the required logical record.
4. CLOSE the file.

To see how this works in a simple case, enter the BASIC
program shown in Figure 11-10. Save the program on disk
by performing an ASCII save:

"TEST" A

SAVE

100
200
300
400
500
600

*THIS
'THIS
*THIS
'THIS
'THIS
"THIS

IS LINE T.e..esvinncennns ceann
IS LINE 2.i0venncenasancnnnss
IS LINE 3.0 cnennscansn ceean
IS LINE 4....iennnnn vesesnsas
IS LINE 5........ Crerecnasnns

Is e
Figure 11-10. BASIC ASCII

Test File

This will write the file in ASCII format so that we can use the
program in Figure 11-11 to read it in a record at a time and
list it on the screen.

8000
3co0

8000 21003¢C
8003 113B80
8006 0600
8008 cp2hsy
800B 2808
800D F680
800F CDO9#4k4
8012 Cb2Dh4o

8015 113B80
8018 CD36k44
801E 20F0
601D 2A3EB0
8020 110001
8023 19
8024 223EB0
8027 DD213B
8§02B DD7EQA
802E DDBEOC
8031 20E2
8033 113B80
8036 CD28uy
8039 18FE
803B 54

45 53

20 20

20 20
8052 20

20 20
0000

80

54
20
20

20

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
20 20
20 20
20 20
00390
20 20
00400

00000 TOTAL ERRORS

252

ORG BOOOH
BUFFER EQU 3CO0H
i SAMPLE PROGRAM TO READ EXISTING FILE

H

;i FIRST OPEN THE FILE

READF LD HL ,BUFFER
Lb DE,DCB1
LD B,0
CALL bgauy
JR Z,REAQ10
REA0O5 OR 80H
CALL 4509H
CALL 402DH
NOW READ AND DISPLAY
REAGI0 LD DE,DCB1
CALL 4436H
JR NZ,REAQO05
LD HL,(DCB1+3)
LD DE, 256
ADD HL,DE
LD (DCB1+3),HL
LD IX,DCB1
LD A, (IX+10)
cp {(IX+12}
JR NZ,REAQ1TO
LD DE,DCB1
CALL 4428H
REAO20 JR REAC20
pep1 DEFM *TEST
20 20 20
20 20 20
20
DEFM ¢ *
20 20
END

;BUFFER LOCATION IN HL
;DCB LOCATION

;READ OHE SECTOR

;s HAKE OPEN CALL

3GO IF 0K

{SETUP FOR ERROR HSG
;DISPLAY ERROR MESSAGE
; REBOOT

;DCB LOCATION
sREAD RECORD
;GO IF ERROR
$GET BUFFER ADDRESS
s INCREMENT
sBUMP TO NEXT SCREEN
;STORE FOR NEXT READ
:DCB ADDRESS
sGET NRN
; COMPARE TO LRN
1GO IF ERROR
sDCB LOCATION
sCLOSE FILE
;JUMP HERE ON END

Figure 11-11. Read Test File

Program

SECTION



The program in Figure 11-11 is a simple read of an existing
disk file. We did some things in it that are a little dangerous
(like incrementing 256 bytes each time through the loop for
the screen address and modifying the buffer address in the
DCB), so try it only with the TEST file from Figure 11-10.

The DCB for the read is DCB1. Before we OPEN the file, the DCB
contains TEST padded out to 23 characters with blanks, a
carriage return, and eight terminating blanks. This cor-
responds to the DCB format required by the TRSDOS calls. We
OPENed the TEST file by CALLing 4424H with the buffer
address in HL, the DCB address in DE, and the logical record
length in B. The logical record length in this case is 0,
signifying that a logical record corresponds to a physical
record, or sector.

If an OPEN error had occurred, Z would not be set on return,
and we would have gone to the special “display TRSDOS error
message” routine at 4409H and then rebooted.

Hints and Kinks 11-5
Error Code Routine

The error code routine is another TRSDOS call
that converts the error code returned in the A
register to a description message. The message
is then displayed. It makes sense to use it,
rather than printing out a nebulous ERROR
1786, SUB A-8B DURING HIGHEST HIGH TIDE.

After a successful open, the DCB contains variable data
placed in it by the TRSDOS OPEN routine. The DCB appears as
shown in Figure 11-12. Note that at this time TRSDOS knows
the length of the TEST file and puts a 0002H in DCB+12,+13
(ERN or end record number). It has also initialized the NRN
(next record number) to 0000H in preparation for a READ or
WRITE.

253



DCB+0 [

11
21
3t
4 BUFFER ADDRESS = 3CO0H
5 00H OFFSET
6 DRIVE #
77 :
8 86H EOF OFFSET
9 00K LRL = 0 {256}
10 00H NAN = gooH
11 OOH
12 02H }
ERN = 0002H

Figure 11-12. DCB After
- OPEN

The next set of code makes a call to READ a record. If the
logical record length were not 0 (256 bytes), we would specify
a “user record” area in HL. The READ call would then transfer
the next logical record from the buffer into the user record
area. This might involve a new disk read of the next sector,
or would simply involve transferring the next logical record
from the buffer.

Since we're working with logical records equal to physical
records {sectors), however, we did not pass anything in HL.

After a successful READ, the DCB appears as shown in Figure
11-13. The NRN has been incremented to 1, and the data from
the sector appears on the screen (buffer). The buffer location
is now picked up from DCB +3, +4 and incremented by 256 to
point to the next screen location. (Don’t try this for more
than four sectors!)

254



DCB+0 |

1
2|

3

4

5 00H

6

71

8 86 H

9 00H

:? g;: NAN = g001H
:; ' g%: ERN = 0@02H

Figure 11-13. DCB After
READ

Now we come to an important portion of code. The current
record number is picked up from DCB+10 and compared to
the ending record number in DCB + 12. If they are not equal,
another READ is done. If they are equal, you perform a CLOSE
file by CALLing TRSDOS CLOSE at 4428H with DE containing
the DCB address. For the TEST file, we make two passes
through the read portion of the code and then CLOSE the file
and loop at REA020.

This is in essence how a read of any existing sequential file
can be accomplished. Many Radio Shack disk files have
logical record lengths of 256 bytes (look at any DIR display),
so the procedure for processing any existing BASIC files
would be very similar to the above code.

255



Creating a New File and Reading It Back

Now that we’ve gotten our feet wet with disk I/O, let’s try a
plunge into deep water with a write of a new file and a
following read. We’ll use logical record lengths other than
256. The program shown in Figure 11-14 takes the contents
of the screen and opens a new file called SCREEN. SCREEN has
logical record length equal to the size of a screen line (64
bytes). There’ll be 16 logical records in 4 physical records for
the SCREEN file. After the file is created it can be read back
and displayed by the second part of the program.

The program is divided into three parts — initializing a new
file and writing it, clearing the screen, and reading the file
back in.

Initializing
The first part calls INIT to create a new file. A 256-byte buffer
is specified in HL, and the usual DCB is specified in DE. The
DCB in this case has the name “SCREEN”. A logical record

length of 64 is specified in B. The code at WRT005 is an error
routine to display any disk error on the screen.

After a successful INIT, the character string in the DCB is
replaced with the date shown in Figure 11-15. Note that the
NRC (next record number) is initialized to 0000H for the INIT,
just as it was for the OPEN.

256



8000 00100 ORG 8000H
00110 ; SAMPLE PROGRAM TO WRITE SCREEN TO DISC AND READ IT BACK
00120 ; WRITE SCREEN

8000 217280 00130 WRTREA LD HL,BUFFER +BUFFER LOCATION
8003 117281 00140 LD DE, WDCB ;DCB LOCATION
8006 0640 00150 Lp B,64 :64 BYTES PER LOG RECORD
8008 cb2ouy 00160 CALL 4420H CREATE A NEW FILE
800B 2808 00170 JR Z,4WRT010 ;GO IF 0K
800D F680 00180 WRTO05 OR 80H iSETUP FOR ERROR MSG
800F Cpogyy 00190 CALL 4ko9H sWRITE ERROR MSG
8012 C32D40 060200 Jp 402DH sREBOOT
8015 21C03B 00210 WRTO1C LD HL,3C00H-64 i SCREEN START-256
§018 E5 00220 PUSH HL ;SAVE ADDRESS
8019 E1 00230 WRT020 POP HL iGET LINE #
8014 1145000 00250 LD DE, 64 i INCREMENT
801D 19 00250 ADD HL,DE ;POINT TO HEXT LINE
801E 7C 00260 LD A,H JGET MS BYTE
801F FE4O 00270 cp 40H +TEST FOR LAST LINE
8021 280B 00280 JR Z,WRTO30 ;GO IF DONE
8023 E5 00290 PUSH HL $SAVE UREC ADDRESS
8024 117281 00300 LD DE,WDCB sWRITE DCE LOCATION
8027 CD39uy 00310 CALL 44394 sWRITE UREC
8024 20E1 00320 JR NZ,WRT0OO05 GO IF ERROR
802C 18EB 00330 JR WRTO20 ;CONTINUE
802E 117281 00340 WRT030 LD DE, WDCB :DCB LOCATION
8031 CD284y 00350 CALL 4428H ;CLOSE FILE
8034 20D7 00360 JR NZ,WRT0OS ;GO IF ERROR
00370 ; CLEAR SCREEN
8036 21003¢C 00380 LD HL,3CO00H sSCREEN START
8039 3E20 00390 %RT040 LD A,V -t $BLANK
803B 77 00400 Lp (HL), A $STORE BLANK
803¢C 23 00410 INC HL ;BUMP PNTR
803D 7¢C 00420 LD A,H sGET MS BYTE
803E FEuQ 00430 CP 40H ; TEST FOR END
8040 20F7 oohky0 JR NZ,WRTOA4O ;GO IF NOT END
00450 ; NOW READ BACK FILE

8042 217280 00460 LD HL,BUFFER {BUFFER LOCATION
8045 117281 00470 LD DE, WDCB ;DCB LOCATION
8048 0640 00480 LD B,64 i64 BYTES PER LOG RECORD
804A CD2u4y 00490 CALL bu2ugh :OPEN SCREEN FILE
804C 20BE 00500 JR NZ,.WRT0O5 GO IF ERROR
804F 21C03B 00510 WRTO50 LD HL,3C00H-64 i SCREEN START-256
8052 ES 00520 PUSH HL +SAVE ADDRESS
8053 E1 00530 WRT060 POP HL 5GET LINE #
8054 1145000 00540 LD DE, 64 s INCREMENT
8057 19 00550 ADD HL,DE ; POINT TO NEXT LINE
8058 7¢C 00560 LD AH 3GET MS BYTE
8059 FE40 40570 cp 40H ; TEST FOR LAST LINE
805B 2808 00580 JR Z,WRTO70 i1GO IF DONE
805D ES 00590 PUSH HL ;SAVE UREC ADDRESS
805E 117281 00600 LD DE.WDCB :DCB LOCATION
8061 CD3644 00610 CALL 4436H sREAD UREC
8064 20A7 00620 JR NZ,WRTOOS GO IF ERROR
5066 18EB 00630 JR WRTO60 ;s CONTINUE
8068 117281 00640 WRTO70 LD DE, WDCB ;DCB ADDRESS
806B CD28BUuY 00650 CALL §428H ;CLOSE FILE
806E 209D 00660 JR NZ,WRT0O5 GO IF ERROR
8070 18FE 00670 WRTOB0 JR WRTO080 ;LOOP HERE
0100 00680 BUFFER DEFS 256
8172 53 00690 WDCB DEFM 'SCREEN N

43 52 45 45 4E 20 20 20

20 20 20 20 20 20 20 20

20 20 20 20 20 20
8189 oD 00700 DEFB 0DH
8184 20 00710 DEFM * '

20 20 20 20 20 20 20
0000 00720 END

00000 TOTAL ERRORS

Figure 11-14. SCREEN Program

257



Q
O
@
+
L)

1
2
z ;i: } BUFFER ADDRESS = 8872H
5 o0H OFFSET
6 DRIVE #
7
8 EOF OFFSET
9 40H LA = &4
10 00H
NRN = 2eaH
1 00H :
i2 04H } ERN = 20@4H
13 00H

1
" (MODEL 11l) i
'

Figure 11-15. DCB After
INIT

Writing

Now a series of disk writes is done. Each write specifies a
UREC (user record area) in HL. This would normally be RAM
memory, but in this case we’re using the video screen as a
user buffer. The user buffer must be the same length as the
logical record length or greater. In fact each new call to
WRITE uses the next screen line as the UREC. Each write
causes 64 bytes to be moved from a screen line into the buffer
area. After each fourth move, a disk write of the physical
record (sector) is automatically performed. Typical DCB
contents are shown in Figure 11-16.

258



DCB+0

1

2

3 72H

4 80H

5 40H

6 00H

7

8 EOF OFFSET (Reflects Write of
Firgt Logical Record}

9 40H

10 00H

11 QQH NRN=0Q00H

:2 g:: } ERN = 8904H

Nota: After First WRITE

Figure 11-16. DCB After
WRITE

Clearing

After 16 writes of the 16 screen lines, a call is made to CLOSE
to close the SCREEN file. The CLOSE is especially important
on a write as there may be logical records in the buffer that
have not yet been written to disk. The CLOSE in this case
flushes the buffer.

The screen is cleared with the next bit of code.

Now an OPEN is done with the same DCB used as in the INIT
and WRITE. Note that the CLOSE restored the character data
in the DCB, and that we can perform the OPEN without
having to r\einitialize the DCB with the file name. The OPEN
specifies a logical record length of 64. In fact, we must know
beforehand what the LRL will be in reading back a file. There
is no mechanism for obtaining this from the TRSDOS calls.

259



Reading The File Back

After a successful OPEN, the NEN (next record number) in the
DCB is set to 0000H in preparation for the READ (or WRITE —
the TRSDOS routines don’t know which will follow). A series
of READs is then done in much the same fashion as the
WRITEs. Each read specifies a UREC (user record area) in HL
which is a video memory line.

After 16 reads, a CLOSE is done to terminate the read action.
Note that in this case we knew how long the file was and
simply read in 16 logical records. This is not very good
programming practice with files; we really should have
worked with the ERN (ending record number) and NRN (next
record number) in conjunction with a discrete count of
records in case there had been some programming or logic
error in creating a file that had fewer records than expected.
We hope you’ll forgive us in this example!

The program will cause the following actions over several
seconds: The screen contents (a DEBUG display is good) are
written out to disk. The screen is cleared and filled with the
same data from the SCREEN file. There are four distinct reads
as each sector is read in, with four blocks of four lines being
output rapidly to the screen after each read.

Killing a File

The KILL call is very similar to the CLOSE, except that it
deletes the file name from the directory and releases the disk
space used for the file to the common pool of granules. The
action of the KILL can be seen by substituting a CALL 442CH in
place of the CALL 4428H near WRT070 in Figure 11-14. Do a DIR
command in TRSDOS after a CLOSE and after a KILL, and you
will observe the KILL action.

We did not verify the physical records as we were writing
them out in Figure 11-14. You have a choice of writing out
each physical record without reading it back in for com-
parison (a “normal” WRITE) or writing out a record and
reading it back in for comparison after each sector write. In
my opinion, you should always verify. I'm assuming that all
data being written out to disk is important to you. Although

260



the VERIFY takes slightly longer because a second disk
operation must be performed to read in the sector for
comparison, it’s just good programming practice to
double-check.

Change the CALL 4439H after WRT020 to CALL 443CH to
perform the VERIFY write. You might want to compare the
time for both a WRITE sequence and a VERIFY sequence.

Hints and Kinks 11-6
How Many Disk Errors Will There Be?

(What is Truth? What is Beauty?) The floppy
disk is an extremely reliable device for an
electro-mechanical peripheral. If you choose
not to VERIFY your writes, you'll probably not
have an error in a diskette full of data.
However, the overhead really is not that great
when you consider the high data rates of the
disk as compared to cassette operation .

Using POSN

We created a sequential file in the code of Figure 11-14 by
the process of writing a series of logical records in sequence.
However, it’s just as easy to work with random records.

In the case of a sequential file, the TRSDOS READ and WRITE
routines keep pointers to the next logical record in the buffer
in the DCB, along with incrementing the NRN (next record
number). If we are to work with random records of a file, we
must aid TRSDOS in locating the physical records by using
the POSN call.

The POSN call is used to specify a logical record number in
the BC register. TRSDOS then finds the proper logical record
by either resetting the DCB pointers (if the logical record is in
the current buffer) or reads in the sector containing the
logical record and positions the pointers. This intermediate
operation is necessary because there is a good chance that
the random logical record is not in the current buffer.

261



Hints and Kinks 11-7
Adding to a File

The POSN command is used to find the last
record of an existing file so that additional
records may be appended. To do this, setup the
BC register pair with a record number
corresponding to ERN (ending record number) +
1. The POSN will automatically find the *'fend
of file.'' You can then do normal WRITEs if
you are adding to a sequential file.

Figure 11-17 shows the use of POSN in reading the first and
sixteenth records back from the SCREEN file. The code here
should be used after the SCREEN file has been created by the
program shown in Figure 11-14. Two READS are done after
an OPEN. Each READ is preceded by a POSN call. The first
POSN specifies logical record number 7, while the second call
specifies logical record number 15.

There are many subtleties involved in working with disk
files, but possibly this brief introduction has been helpful in
getting you started. Try experimenting with using the disk
calls as described in the TRSDOS manual. The TRSDOS I/O
calls may be used to create some powerful assembly-
language programs that use disk a lot more efficiently than
BASIC code.

262



8000 60100 ORG 8o00H
00110 : PROGRAM TO READ SCREEN FILE AND DEMONSTRATE POSH CALL
00120 : CLEAR SCREEN

8000 21003¢C 00130 LD HL,3CO00H 3y SCREEN START

8003 3E20 00140 WRTO40 LD A0t $BLANK

8005 77 00150 LD (HL) ,a ;STORE BLANK

8006 23 00160 INC HL :BUMP PNTR

8007 7C g0170 LD A\H ;GET MS BYTE

8008 FE4O 00180 cp 40H ;TEST FOR END

8004 20F7 060190 JR NZ,WRTO40 ;GO IF NOT END
00200 ; READ BACK LOGICAL RECORDS 7 AND 15

800C 215D80 00210 LD HL,BUFFER sBUFFER LOCATION

B0OF 115D81 00220 Lp DE,WDCB :DCB LOCATION

8012 0640 00230 LD B.64 ;64 BYTES PER LOG RECORD

8014 CD24ny 00240 CALL Bhauy ;OPEN SCREEN FILE

8017 2808 00250 JR Z,4YRTO50 ;GO IF NO ERROR

8019 F680 00260 WRTOAS OR 80H ;SETUP FOR ERROR HSG

801B CDOG4Y 60270 CALL 4409H sWRITE ERROR MSG

801E C32D40 00280 JpP 402DH ;REBOOT

8021 215D80 00290 WET050 LD HL,BUFFER iBUFFER ADDRESS

8024 115D81 00300 LD DE,WDCB ;DCB ADDRESS

8027 010700 00310 LD BC,7 iLOGICAL RECORD 7

802A CDy2y4 ¢0320 CALL 4442H ;POSH CALL

802D 20E4A 00330 JR NZ,HWRTO45 ;GO IF ERROR

802F 21003¢C 00340 LD HL,3C00H ;UREC LOCATION

8032 115D81 00350 LD DE,WDCB ;DCB LOCATION

8035 CD3644 00360 CALL 4436H ;READ UREC

8038 20DF 00370 JR NZ,WRTO45 ;GO IF ERROR

803A 215D80 00380 LD HL,.BUFFER ;BUFFER ADDRESS

803D 115D81 00390 LD DE,WDCB ;DCB ADDRESS

8040 010F00 00400 LD BC,15 ;LOGICAL RECORD 15

8043 cphz2ny 00410 CALL L4424 ; POSN CALL

8046 20D1 00420 JR NZ,WRTOL4S ;GO IF ERROR

8048 21CO3F 00430 LD HL,3FCOH ;LAST SCREEN LINE

804B 115D81 00440 LD DE,WDCB ;DCB ADDRESS

804E CD3644 00450 CALL 44364 ;READ RECORD

8051 20Cé6 00460 JR NZ,WRTOL5 ;GO IF ERROR

8053 115D81 00470 WRTOT70 LD DE,WDCB ;DCB ADDRESS

8056 Cb284y 00480 CALL 4528H 1CLOSE FILE

8059 20BE 00490 JR NZ,WRTOH4S ;GO IF ERROR

805B 18FE 00500 WRT080 JR WRTO0BO ;LOOP HERE

0100 00510 BUFFER DEFS 256

815D 53 00520 WDCB DEFHM *SCREEN

43 52 45 45 KE 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20

8174 0D 00530 DEFB 0DH

8175 20 00540 DEFM ! !
20 20 20 20 20 20 20

0000 00550 END

00000 TOTAL ERRORS

Figure 11-17. Use of POSN

263






SECTION III

Larger Assembly-Language
Projects

Chapter Twelve
Assembly-Language Design, Coding,
and Debugging

In this chapter, we’ll follow a typical assembly-language
programming project from beginning to end. It’ll be a
“medium-sized” project, one that might well take a pro-
fessional programmer a month or more to complete in all
phases. We'll describe the trials and tribulations of that
programmer and illustrate the steps required in any large
assembly-language job. (The punch line of this chapter:
“For you see, my friends, that professional programmer was
ME!)

This is a story about Cal Coder, a programmer/analyst at
GIGO Software, Inc. GIGO is one of the smaller companies
producing software packages for the Radio Shack TRS-80
microcomputers.

The Inception Phase

Cal had just walked into his office at GIGO when his phone
rang. “Cal, this is Paul . ... Can you drop in for a second?
I think we might have something you’ll be interested in.”

Having served in the Sea Scouts, Cal knew a direct order
couched in polite terms. He started toward his boss’s office.

After the usual small talk, Paul explained, “The guys in
Marketing have come up with this idea about a new
program for the TRS-80 — the ads start tomorrow, and
we’ve already sold a hundred copies. Can you get right on

265



it? Here’re the notes on it,” he said, handing Cal a
matchbook cover with an ad for “Earn Big Money in Your
Spare Time Programming” on one side and several
scribbled notes on the other.

Looking over the notes, Cal saw that there was a need for
a Morse Code Generator program that would act as a
Morse code instructor or playback prerecorded Morse code
messages. Marketing had done some analysis in Butte,
Montana that indicated potential sales of hundreds of
copies. It was up to Cal to come up with a specification to
further define the project.

Research

“Do you know anything about Morse code?” Cal asked Ted,
his officemate and fellow-programmer.

“Is it anything like a Hamming code?” Ted replied,
puzzled.

Hints and Kinks 12-1
Hamming Code

Ted was making a pun at Cal's expense. A
Hamming code is a special code frequently used
in telemetry, but not often used in computer
processing. Missing bits in data can be
regenerated by analyzing the remaining bits.
Obviously, the overall data transmission rate
is reduced by inclusion of data bits for
reconstruction.

Few enough bits are ‘‘'dropped'' in computers
to make a code such as this unnecessary in
normal applications. Parity bits or other
check bits do provide some verification of
data, which is usually sufficient.

266



“Well, hams use it, but I don’t think so,” Cal replied. “I
guess I'll have to do some research on it before I write that
spec for the Morse Code Generator I'm working on.”

“Why change your approach now?” Ted asked with a leer.
Cal threw a carton of C90 cassettes at him.

Later, Cal had dug up most of what he needed to know
about Morse code. It was basically a series of long and
short pulses representing the letters of the alphabet,
digits, punctuation marks, and some special characters.
The number of pulses varied. A frequently used letter like
“e” consisted of one short pulse, called a “dot” or “dit.” A
“t” consisted of one long pulse called a “dash” or “dah.”
Less frequently used letters, digits, and punctuation
marks consisted of longer combinations of dots and dashes.
A “p”, for example, was represented by “dot dash dash
dot,” while a “5” was “dot dot dot dot dot.”

Cal also located the specifications on the standard lengths
for dots and dashes and on the spacing. A dot was one unit
long, while a dash was three units long. The space
between dots or dashes was one unit long, the space
between characters was three units, and the space
between words was five units long.

Cal verified his findings with some amateur radio friends
and got more data. He supplemented this research with
some articles in BYTE, 80-Microcomputing, and other
computer magazines, and after several days had done
enough research to feel he knew more than enough to
write the spec.

267



Hints and Kinks 12-2
Programming Periodicals

Here's a list of some current publications
which would have general programming
information:

73 Magazine

80 Microcomputing

ACM Computing Surveys
BYTE

Communications of the ACM
Computer Design
Computer Magazine (IEEE)
Creative Computling
Datamation

Dr. Dobb’'s Journal
Eighty US Journal

Ham Radio

Interface Age

Kilobaud Microcomputing
Personal Computing
Popular Electironics

QST

Radio Electronics

[c3 o ca e ite viibe il VI e wilie v b il v Bk o B v it il v B B

E=Electronics oriented, some computer topics
H=Hobbyist computer magazine

P=Professional magazine

R=Amateur radio, some computer topics
T=TRS-80 topics exclusively

The Preliminary Specification

The spec he produced is shown in Figure 12-1. It's a
preliminary operational specification that does not show
anything about the actual implementation of the program.
As a matter of fact, in looking over the spec, we might ask
ourselves whether it is possible to produce such a program.
Certainly we know the TRS-80 can produce messages on
the screen, can generate audio tones out of the cassette
output, and read character strings from the keyboard. But
can it generate Morse code characters at 60 words per
minute? Is that too fast for even assembly language?

268



SPECIFICATION: GIGO
SOFTWARE PRODUCTS
MORSE CODE GENERATOR
PROGRAM, MORSE

General Description

This assembly-language software package is a
TRS-80 Model I program that will run in systems
with 16K of RAM or greater. It will generate
international Morse code through the cassette output.
Code generated will be either random code characters
for practice purposes or a user-defined string of Morse
code characters. Speeds of operation are user-defined
and may be from 3 to 60 words per minute.

Loading Procedure

The MORSE package is loaded from disk by entering
the command, MORSE, while in TRSDOS command
mode. The MORSE program will be loaded and
execution will start immediately.

The MORSE package is loaded from cassette by
entering the BASIC command mode. After the >
prompt, the following sequence is entered to load and
execute the MORSE program:

*CMD"T" (Turn off real-time-clock in Disk BASIC)
*SYSTEM (Enter Monitor mode)

#7 MORSE (Load cassette tape file MORSE)

*7/ (Start execution after successful load)

Operating Instructions

After loading, MORSE will clear the screen and
position the cursor to the “home” position at the upper
left corner of the screen. It will also establish a
communication area on the bottom three lines of the
screen as shown in Figure 1.

Pressing CLEAR at any time will “reset” MORSE and
cause the following line to be displayed:

269



MORSE

CHAR=SEND CHARACTER SHIFTY 0-8=8END MBG N
SHIFT R=5END RANDOM
SHIFT D=DEFINE M5G SHIFT S=DEFINE SPEED

SHIFT PsN=PRINT OR NO

The above information is also displayed after loading.

Figure 12-1. Specification
for MORSE

/cu RSOR “HOME” POSITION

4
«———1 TEXT AND MESSAGE
DEFINITION AREA
(12 LINES)
Lioonosoiniisn me itz ans
<—f— COMMUNICATION
AREA
(3 LINES )

Figure 1. MORSE Display
Characteristics

Normal operation: MORSE normally operates in the
“send message” mode, where a single key stroke will
send a character or one of 10 messages. Pressing a 0
through 9 key with a SHIFT will send a predefined
message 0 through 9, while pressing the SHIFT R keys
will send a string of random characters. If the
message 0 through 9 has not been defined, no action
will occur. Transmission of message 0 through 9 will
continue at the current speed of operation until the
end of the message is reached. At the end of the
message, MORSE will await the next command. If a
(Riandom string is being sent, transmission will
continue indefinitely until the CLEAR key is pressed.

At the same time a character, message, or random
270




characters are being sent, the message will be
displayed on the screen and optionally printed on the
system line printer (see “Line Printer Operation”
below).

Define Message Mode: The define message mode is
entered by entering SHIFT D. After the SHIFT D has
been pressed, MORSE will respond by the line

DEFINE MESSAGE MODE.ENTER MESSAGE
# 0-9:

The user must then enter a valid message number 0
through 9. If a valid message number is not entered,
the line

INVALID MESSAGE NUMBER. MUST BE O -9

is displayed, and the user must reenter the number.
The user may simply press CLEAR to exit the Define
Message Number mode.

Once the message number has been entered, MORSE
displays the line

ENTER MESSAGE. TERMINATE BY ENTER

The user can now enter the Morse code message to be
stored as message number N. Valid characters for the
message are the alphabetic characters A through Z,
numeric digits 0 through 9, period, comma, question
mark, slash (/), and several special characters. The
special characters are a dash, for “break” (-....-); space,
for word space; semicolon for “error” (........ ); and
equals for “end message” (.-.-.). At the end of the
message, the user presses the ENTER key. Invalid
characters are ignored and are neither entered as
part of the message, displayed, nor printed.

The size of the message is limited to 256 bytes per
message. MORSE checks the amount of memory used
and will generate the error message

MORE THAN 256 CHARACTERS. 256 ACCEPTED

271



if there is not enough space to store the current
message. Only the first 256 characters of the current
message will be stored if this condition occurs!

Deletion of Messages: Messages may be deleted by
entering the Define Message mode and pressing the
ENTER key for message text. This action releases any
previously allocated memory area to the system
message area.

Define Speed Mode: the Define Speed mode is entered
by entering the keys SHIFT S during normal operation.
MORSE responds with

SET SPEED MODE. ENTER SPEED 3 TO BO WPM:

The user must now enter an appropriate speed for
message transmission, followed by an ENTER. If a
valid speed is entered, the MORSE speed is set to that
value. If an invalid speed is entered, MORSE will
display the message

INVALID SPEED. MUSY BE 3 7O GO
The user must then reenter a correct speed.
The “default” speed of MORSE is 3 words per minute.

Line Printer Operation: Messages may be optionally
printed on the system line printer by pressing the
keys SHIFT P during normal operation. Pressing the
keys SHIFT N disables line printer operation. The
system line printer must be capable of responding at
the desired speeds. A speed of 60 words per minute,
for example, is about 300 characters per minute or 5
characters per second. If the printer has a long
“carriage return” time without buffering data, some
characters may be lost by certain types of slow
printers.

Random Character Generation: During this mode, a
sequence of pseudo-random (repeatable) characters
are generated. Comparison of code practice copy and
the sequence may be performed by examination of

272




line printer or display output.

Audio Output: Audio output from MORSE is through

the cassette “AUX” output which would normally

connect to the system cassette recorder. Audio output

may be recorded directly on blank cassette tape and

replayed, or the AUX output may be connected to an
- external audio amplifier.

Amateur Radio Output: Amateur radio operators may
use the audio output to key transmitters through
appropriate circuitry of their own design. GIGO

SOFTWARE, INC. can assume no liability in
interfacing to such an application.

In producing the specification, Cal drew upon his

experience with similar types of programs. He did some

preliminary computations that verified speeds of 60 words

per minute could be obtained with no problems. One of the

formulas he found gave the words per minute speed as —
WPM =dots per second #2.4

Working from this, Cal deduced that the fastest dot time
would be 50 milliseconds, or 50,000 microseconds, or about
10,000 instruction times. He concluded that this was slow
for assembly language. However, this was a crucial stage.
There were many other problems that may not be visible
at this point, as we shall see.

Hints and Kinks 12-3

Instruction Times

Instruction times in the TRS-80 range from 4 T
cycles to 23 T cycles. A T cycle (T state) is
1/4 of a clock cycle and is used in Zilog
literature to define instruction speeds. The
clock rate of the TRS-80 is about 1.77
megahertz, making a T cycle about .564
microseconds and instruction times about 2.255
microseconds to 51.9 microseconds (!). The
nominal instruction time is about 9 T cycles
or about 5 microseconds. since many
instructions take 4,7.8.9, and 10 T cycles.

273



Program Design

Cal’s next task was to produce a complete implementa-
tion specification. This would be a specification that
would discuss technical considerations of implementing
the program. This step is often ignored for short programs
and sometimes ignored for major programs involving
many man years of work, much to the dismay of some
companies.

The implementation spec includes flow charts of all
program code and may also include a text description of
portions of the program. It may also define and specify
system tables.

Cal was too experienced a programmer to simply start
coding the program. He knew that even for small jobs a set
of flow charts uncovered many logic errors and helped
him visualize the structure of the program.

As for program structure, Cal usually used a combination
of “top-down” and “bottom-up” design. The “top-down” ap-
proach dictated the program be designed from major func-
tions downward, finally culminating in the lowest level
modules or subroutines. The “bottom-up” approach used
the opposite tack: the program was first coded at the
lowest level of routines, and then progressively more
complicated routines were designed.

Cal already had a preliminary spec that represented the
“top-down” operation of the program. His job was now to
implement the spec by defining program functional
modules that would perform the logical functions of the
program. A module is a collection of code performing a
well-defined specific function with a set of inputs to
produce a well-defined set of outputs. He knew that parts
of the design would utilize old code, perhaps intact, such as
a DELAY subroutine to delay a specified time. He also
knew that other parts would be new code that he would
have to write from scratch.

274



“Do you have your flow-chart template?” Cal asked Ted.
“Ive got to get this design done before I slip the schedule
again.”

“Sorry, I used mine to scrape up the TRSDOS diskette I left
out in the sun yesterday. The template melted, too.”

Hints and Kinks 12-4
‘'Standard’'' Flow Chart Symbols

Here are some symbols commonly used in

flowcharting:
ECISIO ENTRY
DECISION OFF-PAGE
YES MAYBE CONNECTOR
NO
. | PROCESSING
,COUINT = ON- PAGE TERMINATOR
COUNT +i CONNECTOR
DONE

INPUT/

COMPUTE OuTPUT

Cal found a spare template and set to work. He did not
simply produce page after page of flowcharts, but spent a
great deal of time contemplating various aspects of the
design, occasionally referring to reference materials or
notes.

Several days later, Cal was done with the flow charts. A
sample of what he produced is shown in Figure 12-2.
Although there are several standard flowcharting
symbols, Cal used those which his company had
established as their standard. They were similar to those
used by most other programmers in defining programming
operations — a rectangular box for “processing,” a

275



diamond for a decision point, a “subroutine” symbol, on
and off page connectors, etc. The important thing to Cal
was that he produce a shorthand version of the program he
was going to code in standard notation.

{ ENTER )

SAVE
REGISTERS
£

SEARCH
CDTAB FOR MUST BE o DaeH

(A)-SAVE FOUND! 2= SPACE
INDEX 3 =TERMINATOR

v

=TTAB+
2xINDEX
v
GET TTAB
CODE —>
HL
¥
SHIFT HL
2 BITS RIGHT|  “TERMINATOR"

11+ BITS 7,6 FOR ALL DOTS
SAVE 2 LSBS (ERROR) CASE AND TOGGLE

: GET DOTO
° TIVE

Figure 12-2. Flow Chart
Example

SNDCHR

BRANCH
OUT ON CODE

DOT

“Would you take a look at these when you get a chance?”
Cal asked Ted.

Cal’s company had a policy of design reviews for major
jobs. After a programmer had finished specifying and
designing a large program, he would distribute copies of
the implementation spec and flow charts to the other
programmers in the department. Then, after each had had
a chance to look them over, a general meeting would be
held to review the design.

276



The meetings produced their share of nit-picking
comments but also brought to light omissions or errors in
most designs.

Since this was a smaller program, Cal was not obligated to
hold a design review, but he did want to have his
officemate review the flowcharts to catch any obvious
errors.

“Oh, oh!” Ted exclaimed while looking over one page of the
flowcharts.

“What’s the matter?”

“I don’t think you’ve thought this through! You've got the
program picking up a character from the keyboard, con-
verting it to Morse code, outputting the code through the
cassette port, and then going back to pick up the next
character.”

“Right — what’s wrong with that?”

“Well, that means that the next character typed can’t be
output ’til the last one is done!”

NSO?H

“If you do that, the user has to wait instead of typing
normally. He'd have to type a character, wait for the tone
to stop, type the next ....”

“Oh,” Cal groaned, “I see what you mean. I need a
buffered input that’ll pick up keys even during output of
characters!”

Hints and Kinks 12-5
The Problem

If the input was not buffered, each character
would have to be output before a new character
was read from the keyboard. This doesn't seem
annoying in theory, but in practice it would
make for Morse code output that would have
longer spaces than normal between characters
and would inhibit the operator from typing
freely.

277



“You didn’t need this job, anyway!” Ted said with a grin
and ducked as a copy of TRS-80 Assembly-Language Pro-
gramming went flying by his head.

Cal did some revision and came up with a new set of
flowcharts. After another review by Ted, he was ready to
do the coding.

In the process of flowcharting, Cal defined several levels of
modules. They are shown in Figure 12-3. The reader may
want to refer to Figure 13-8 to see how they relate to the
actual code of the program

“HIGHEST LEVEL"

LEVEL 1
DRIVER MAIN DRIVER

LEVEL 2

DEFINE SPEED | RANDOM XMIT PRINT | NOPRNT APPLICATION
MAIN ROUTINES

LEVEL 3

FNDMSG | SNDCHR | DSPMES | LPRINT | DISCHR SCROLL | CLRCOM | INPUTS APPLICATION
SUBROUTINES

LEVEL 4

INPUT INPUTW | GETCHR RAND GENERAL-PURPOSE
SUBROUTINES
LEVELS
SHIFT SuB FILLCH DECBIN DELAY GENERAL-PURPOSE

“LOWEST SUBROUTINES

LEVEL"

Figure 12-3. Typical Program
Modules

278



Coding

Cal’s flowcharts were such that he could have handed
them to a junior programmer for coding. On larger jobs,
there might be teams of programmers working on the
project, each one coding his portion of the job after the
implementation specification and flowcharting were done
and reviewed. On this job, however, Cal did his own
coding.

With the flowcharts and spec done, the coding went very
rapidly. Cal didn’t use regular coding sheets, although
many of the programmers did. He wrote his code in pencil
on quadrille pads since he would be entering the code on
the system himself. The company maintained data entry
operators that would take coding on coding sheets and
enter it into the system for assembly, but Cal preferred to
avoid the local queues on smaller jobs and enter the code
himself.

Cal was very familiar with the Z-80 instruction formats,
but remembered the problems he had had when he first
started working with Z-80 code. It had taken him some
time to get familiar enough with the instruction formats
that he could automatically put down the correct form.
Another problem had been the large number of instruction
types available. Now, he rarely consulted the manual for
instruction formats and operation.

One thing that Cal made certain of was to put a comment
on virtually every line of the program. He knew they
would be invaluable not only months later, but would help
days later in interpreting some of the instructions.

Finally, the coding was done. Cal used his own TRS-80 in
the office to enter the code and assembled the program. On
the first assembly, he had several dozen assembly errors,
most of them produced by a misspelled label. Correcting
the errors, Cal reassembled, and after three edits and
reassemblies got a “clean” assembly.

He compared the assembly listing with his original code in

279



great detail, and then put the original code away in what
he called his “coward’s nook,” a place he put material he
thought he’d never use again but was afraid to throw
away.

Desk Checking

Cal’s next task was desk checking. In this step of
producing the MORSE program, Cal went over the
assembly listing in minute detail. He compared it with the
flowcharts for logical errors and looked at each section of
code for such things as registers destroyed in subroutines
when they should not have been and errors in using the
stack.

On this last point, Cal paid particular attention to detail.
He made certain there was a POP for every PUSH and a RET
for every CALL, or at least a proper adjustment of the stack
pointer. More than once he had had his program “gobbled
up” by a hungry stack.

On some of the code Cal “played computer” and used a
paper and pencil to record the actual operation of a
subroutine, just as the Z-80 would do. He drew a line with
all Z-80 registers as a heading, assumed some initial entry
data for the subroutine, and then laboriously went
through instruction by instruction, decrementing
registers, adding results, and counting loops. One of his
sessions for the SCROLL subroutine is shown in Figure
12-4.

DE HL B A 8C
0 3 - -
-
o 6
12 5
24 4
48 3
9% 2
192 I
284 0
3
381 2
37 [
315 o}
IF
HC o o
| DE |
AF SEED _ .
) . o 0 375
STACK Figure 12-4. Playing Computer



As a result of the desk checking, Cal edited and
reassembled twice again. The first time picked up some
fairly important errors he had made in logic, while the
second time cleaned up some minor problems he had found
on the desk check after the first reassembly. Cal finally
felt confident enough in the code to try on-line debugging.

Hints and Kinks 12-6
How Much Desk Checking?

How much desk checking is necessary? If you
were debugging on a large system with many
programmers and limited access, you'd want to
do a great deal of desk checking. On your own
TRS-80, however, do enough to keep from being
forced to reassemble more than about once
every four hours of debugging time. This
usually means a couple of passes through all
the code initially with fairly close scrutiny.
Find a comfortable trade—-off between time
spent in reassembling and time spent desk
checking.

“Qk, Ted, I'm going to run this turkey. Want to see it work
the first time?”

Ted raised his eybrow and said, “I almost had a program
run the first time. Of course, it was only three instructions
long...”

Debugging

Actually, at this point, many of Cal’s debugging problems
were over. He had written a good implementation spec,
flowcharted the program, had a one-man review, and had
done comprehensive desk checking. The debugging task at
this point would probably only be for minor oversights.

Cal loaded MORSE and then created a disk file version by
the DUMP command. Loading it in again, he used Disk
DEBUG to start execution at location 8000H. The screen
filled with *@@@@@@@@@...” and the disk “rebooted.”

281



“That wasn’t quite the result I expected,” muttered Cal as
Ted turned back to his desk.

Cal debugged the program by using the “binary search” on
errors we discussed in earlier chapters. By the end of the
day, he had patched the program to the point where it ran
through the initialization fairly successfully and even
output a single character on the cassette audio. The next
error he found, however, was one that was not easily
patched, and he was forced to reedit and reassemble.

It took Cal several more days of debugging to get to the
point where he could find no more known errors. At that
point he turned to his next task in the production cycle.

Comprehensive Testing

GIGO, Inc. was a software house producing software for
the TRS-80 and other computers. The company had long
ago learned to perform comprehensive tests on their
software, rather than releasing it prematurely. Of course,
there was constant pressure from Sales for a volume of
interesting new products, but the Programming
Department manager was firm in his resolve to eliminate
as many bugs as possible before releasing the product (he
was also the son-in-law of the chairman of the board).

Cal spent several days drawing up a test plan that would
exercise as many of the features of MORSE as possible. It
included such things as a check to see that all characters
would be properly output, that all speeds could be utilized,
that all limit conditions (such as 256 characters per
message) worked, and that there was an even distribution
of random characters.

When he finished, he had a formalized test plan on paper.
This was submitted to his manager, Paul, and kept in the
program file. Cal then went down the test plan step by
step and tested each item. He found several minor
discrepancies and several human factor improvements,
such as the length of time that error messages were
displayed on the screen.

282



After the last test item had been cleared up, Cal
reassembled the “last version” of the program, went
through the test plan again and found no errors. He knew
that it was entirely possible that lurking in the depths of
the MORSE program were small bugs that might grow their
way to the surface when a user in Chillicothe decided to
transmit four error codes together while using the printer
during a quarter moon. He also knew that it was virtually
impossible to eliminate all bugs except by continued
testing over great lengths of time. However, he was
confident that most users would be very happy with the
program.

With some trepidation, Cal walked into Paul’s office and
said, “Well, here it is, Paul — the final version of MORSE!”

“Great, Cal. By the way, I'm glad you're here. I just got in
a request to develop a TRS-80 program to learn Tic-
Tac-Toe. . ..”

Final Clean-Up

Cal’s work on MORSE wasn’t quite done. He revised the
final specs on the program and filed the specs, listing,
source code, and working program. He knew the
importance of this because when he first joined the
company, he had to take two existing programs and
correct errors that had been discovered. The programmer
who had written them, “No Comment” Garigan, had left
the company to become a tour guide in Pismo Beach.

Garigan’s code contained, as his nickname implied,
virtually no comments on any lines. His flowcharts were
incomplete, his design specs nonexistent. Since that time,
Cal had made it a special point to be as thorough in
documentation as possible. He knew it was entirely
possible that one of those tiny bugs might become the
“Monster That Ate the TRS-80” and that he himself might
be forced to correct his own code.

283



No Resemblance to Programmers Living
or Dead

Although the scenario above is ficticious, it is an attempt
to show an idealized situation in program design and
development. Most programs are developed under less
formalized steps, and many delete such important steps as
flowcharting and final testing. In developing your own
assembly-language programs, you’ll adopt the methods
that work for you, but it may actually take less
development time to go through the procedures defined
above ... so some programmer a year from now won’t
nickname you “No-Comment” Garigan!

In the following two chapters, we’ll show the flowcharts
and listings for two large assembly-language programs:
one for Morse Code Generation and one for a Tic-Tac-Toe
program that “learns.” These should clearly represent
some of the elements of programming style that we’ve
discussed.

284



Chapter Thirteen

A Morse Code Generator Program

In this chapter we’ll look at the design and imple-
mentation of a program to generate Morse code by audio
tones sent to the cassette output port. The program may be
used for code practice, or it may be used for amateur radio
applications to record and playback messages and normal
keyboard characters at speeds of 3 to 60 words per minute.
One of the features of the program is that it is fully
buffered — messages being typed on the keyboard may
“overrun” the actual Morse code output and may be dozens
of characters ahead.

This program was designed as a typical assem-
bly-language application for this book to illustrate some of
the concepts discussed Chapter 12 on large program
design and implementation. Since we'll also discuss the
code in the program, we’ll be tying together many of the
coding concepts discussed earlier.

General Specification

The general specification for the program is shown in
Figure 12-1. (Only the name has been changed from
“MORSE” to “MORG”.) The program has basically three
modes. The first mode is keyboard output. Characters
typed on the keyboard will be output as audio-frequency
Morse code characters from the cassette output (the plug
that normally attaches to the cassette recorder “AUX”
jack). A small, inexpensive amplifier can be used to play
the resulting output through a small speaker. As
characters are output, they are displayed on the screen
and can be printed on the system line printer.

285



The second mode of operation is integrated with the first.
You can generate predefined messages of up to 256
characters in length by a single keystroke. Up to ten
messages can be defined and generated, and you can
intersperse messages and normal text. As characters are
output, they are displayed on the screen and optionally
printed on the system line printer. A typical message
might be defined as message 5 and read CO COQ
CO DE WDBCTY WDBCTY WDBCTY K. Every time you
pressed the “SHIFT, 5” keys, this message would be
generated.

The third mode of operation functions independently of the
other two. With Random mode, you can generate an
endless string of pseudo-random characters for code
practice. As the characters are output to the cassette port,
they are displayed on the screen and can be printed on the
system line printer. The speed of operation of any of these
modes can be defined to be 3 to 60 words per minute.

Operation

After loading, MORG clears the screen, draws a line near
the bottom to define a “communication area,” and outputs
a title message of

MORG

CHAR=SEND CHARACTER SHIFT 0-9=SEND MSG N
SHIFT R=SEND RANDOM SHIFT D=DEFINE MSG
SHIFT S=DEFINE SPEED SHIFT P.N=PRINT OR NO

You can now choose one of the options in the title message.
To define the speed, you press SHIFT S and enter a speed
value of 3 to 60 words per minute. After the speed is
defined, the title message is again printed. To set
simultaneous printing on the system line printer, you
press SHIFT P. The line printer will now echo the Morse
characters displayed on the screen. To disable the printer
at any time, you press SHIFT N. Both actions terminate by
display of the title message. To define a message, you
press SHIFT D. The define message mode is now entered

286



and will prompt you to input a message number of 0
through 9 and to enter the text of the messge. Any number
of characters may be entered for the text up to 256. You
terminate the message by an ENTER key press, bringing

you back to the title message display.

To output characters and messages, you can type in
characters from the keyboard. Each time you type a
legitimate character, there is an output in Morse code
from the cassette output at the currently defined rate of
speed. Illegitimate keys are ignored. Each time you enter
a SHIFT (followed by 0 through 9) the previously defined
corresponding message will be output in its entirety. If no
message has been defined, nothing will be output. As
keyboard text or messages are output, the text is
simultaneously displayed on the screen and output to the
system line printer if Print has been set.

If you have chosen the Random mode by SHIFT R, a
continuous stream of pseudo-random text will be output to
the cassette port, simultaneously displayed on the screen,
and (optionally) printed on the system line printer. The
speed will be at the currently defined rate of speed. The
Random mode simulates normal text by inclusion of spaces
at regular intervals.

Hints and Kinks 13-1
Simulating Text

Text is simulated here by including spaces in
the CTAB, the 128-byte table of random
characters. There are 18 spaces out of 128
characters, making the frequency about a space
every six characters. The program also checks
to make certain that two spaces are not sent
consecutively.

Legitimate characters are the alphabetic characters A
through Z, digits 0 through 9, comma (,), period (.), slash
{/), question mark (?), and three special characters. The

287



three special characters are a dash for a “break” (—....—),
an equals for end of transmission (.—.—.), and a semicolon
for “error” (........ ). All other characters are ignored.

General Design

The general design considerations or research into the
methods of Morse code generation can be broken down into
the following areas:

Characteristics of Morse code
Generation of audio tones

Keyboard read routines

“Buffering”

Conversion to Morse code characters
Message storage and search

® © © © ©

We'll discuss each of these areas, the alternative methods
that could have been used, and the final method that was
adopted in MORG.

Characteristics of Morse Code

Morse code consists of a series of dots and dashes to
represent alphabetic, numeric, and special characters as
shown in Figure 13-1. A dot is defined as a short burst of
an audio tone or other signal, while a dash is a longer
tone. The combinations of dots and dashes used are
generally based on the frequency of the letter in normal
text. An “e” for example is one dot, while a “q” is dash,
dash, dot, dash. The special character question mark (?) is
dot, dot, dash, dash, dot, dot.

288



W O NOUHLEWN e

2rxXe-ITomMmmoowm?>d>
|
|
N<Xg<c-H0IPUVOZZ
|

“T” ‘R “gr sgr “p

Figure 13-1. Morse Code Symbols

The relationship of dots, dashes, spaces between dots and
dashes, and spaces between words is shown in Figure 13-2.
A dot time is the basic unit, a dash time is three units, the
time between dashes and dots is one unit; the time
between characters is three units; and the time between
words is five units. When an audio tone is used for the
Morse code, the tone is on during the dot or dash time and
off during the spaces as shown.

DOT TIME =1=BASIC UNIT

DASH TIME=3=3 DOT TIMES

SPACE BETWEEN DOT OR DASH=1=1DOT TIME
SPACE BETWEEN CHARACTERS =3=3 DOT TIMES
SPACE BETWEEN WORDS=5=5 DOT TIMES

T R S

DASH CHARACTER | DOT ¢ SP DASH SP
SPACE

DOT| CHARACTER DOT | SP |por| sP | pOT

SPACE

1
3 3 1 1 3 1l1l 3 1 11]11

e g g

~g—- TONE ON

— MWW MWWV A A AN T T o
DASH poT DASH DOT  DOT Dot

Figure 13-2. Morse Code Spacing

and Audio 289



A slow speed for Morse code transmission is 5 words per
minute. This is the speed used for the amateur radio
“novice” code qualifying test. Average speeds are fifteen
words per minute, while high-speed “brass pounders” send
at rates of 35 words per minute or greater.

An average word is 5 characters, making the number of
characters per minute 5¥WPM (Words Per Minute). Fifteen
WPM is therefore about 75 characters per minute, or about
1.25 characters per second. The average number of dots
and dashes in a character is hard to define. One formula
relates the number of WPM to dots per second:

WPM=DPS5#2.5

This would mean that 10 dots per second are equivalent to
25 WPM. We'll use this formula for our analysis in MORG.

In MORG, the code speed may vary between 3 and 60 WPM,
allowing for a very slow user and a very fast one. The
number of dots per second for 3 WPM is 1.2; the number of
dots per second for 60 WPM is 24. Since a string of dots
consists of a dot on time and a dot off time, this makes the
dot duration:

Dot duration in milliseconds = 1200/WPM

For example, the duration of a dot at 3 WPM is 1200/3, or
400 milliseconds, while the duration of a dot at 60 WPM is
1200/60, or 20 milliseconds. On the surface, it appears that
an assembly-language program should have no problem in
achieving these speeds, since 20 milliseconds, the most
stringent case, represents 4000 instruction times at 5
microseconds per instruction (5 microseconds*4000 =
20000 microseconds or 20 milliseconds).

The assembly-language program’s main concern is to turn
on an audio tone, leave it on for lengths of time ranging
from 20 milliseconds (60 WPM dot) to 1.2 seconds (3 WPM
dash), and turn it off.

290



Generation of Audio Tones

As we know from Chapter 10, you can easily use the
TRS-80 to generate a wide range of audio tones. In this
case, we need to generate only one frequency, unless we
choose to make the pitch variable.

Hints and Kinks 13-2
Generating Tones

You can accomplish tone generation here by
"itoggling'' the cassette output latch on and
off. You output alternating Ols and 10s to the
cassette latch address OFFH. The 01 causes a
t'*high'' level, and the 10 causes a '‘low'’
level. A zero reference level would be created
by 00.

The audio tone will be on for a dot or dash on time and off
for inter-character or inter-word spacing. Our only
problem would be the shortest duration dot-time that will
have to be handled. Does this represent a duration during
which we can generate a tone or is the duration so short
that we can’t toggle the cassette latch on and off to
produce a tone?

The shortest duration dot-time from above is 20 milli-
seconds. During that 20 milliseconds, we must toggle the
cassette latch on and off several times. If we did it one
time, on and off, the period of the tone produced would be
20 milliseconds.

201



As the frequency of such a tone is 1/period, or 50 cycles
per second, there seems to be no problem in the tone. Fi'fty
cycles per second is too low for both comfortable listem.ng
and amplification on an inexpensive amplifier. If we tried
for 500 cycles per second (500 hertz), we would be toggling
the cassette latch ten times on and off for the shortest
duration dot, which would be fine.

Keyboard Read Routines

We know from Chapter 7 that we can hand-tailor a keyboard
read routine to read any key and convert it to whatever
character we want. In most cases here, we’ll be doing a
“straight” conversion into the ASCII code associated with the
key. However, we will have to convert some keys into special
codes to represent characters for “end of message,” “error,”
and the like. Still, we should have no problem in the
conversion.

Buffering Keyboard Input
& Polling the Keyboard: Problems

There will be a problem in the area of keyboard speed,
however! The specification allows for buffering keyboard
input. This means we can be typing at a faster rate than
the data is being transmitted in Morse code audio. We'll
have to store the characters in some sort of large buffer,
depending upon how many characters ahead we wish to
store.

This also means that as the character is being
transmitted, we must poll the keyboard to see if the next
character is being input. If it is, we must debounce the
character and store it in the buffer. What other problems
do we face at this point?

One major problem is this: If we use a time-delay-loop in
order to generate the on/off times that toggle the cassette
latch to produce an audio tone, we can’t be going out
during the generation of dots and dashes to poll the
keyboard!

292



Hints and Kinks 13-3
Debouncing

Debouncing works like this: When a key is
depressed, it bounces up and down in the space
of fractions of milliseconds, making and
breaking the contact. When a key is released,
the same make and break occurs. Keys are held
down for approximately 1/50th of a second. The
make/break diagram looks roughly like this:

PRESS RELEASE

Tzl

|

"Rollover" allows the next key to be detected
when a previous key is still being held down.
MORG does not have rollover, but looks for the
next key 100 milliseconds or so from the last.
This would allow for typing speeds up to 120
words per minute.

MAKE
KEY HELD DOWN
/58 sEC TYPICAL

BREAK

Debouncing detects the first ‘“*make'' and then
waits 100 milliseconds to bypass bounce on the
press and release.

Scanning (or polling) the keyboard normally takes 50 to
100 milliseconds (1/20th to 1/10 second) because the
character has to be debounced. If we wait this long to
debounce a character that’s being input, it'll extend the
dot or dash time for high-speed transmission (for instance,
a dot-time for 20 WPM is 60 milliseconds). If we delay 50
milliseconds to debounce, the dot-time changes to 110
milliseconds! This is clearly unacceptable.

What to do, what to do . ... On the one hand, we need to
be able to read the keyboard during transmission of
characters to eliminate a tedious “wait until complete
before reading keyboard” condition. On the other hand, it
appears we can’t debounce the character because it will
affect the dot and dash times.

293



Buffering & Polling: Some Solutions

Is there any other way to time-out the bounce? If there
were, we could rush out for a fraction of a millisecond or so
during dots, dashes, or spaces and check to see if a key
were pressed. If a key were pressed, we could quickly
decode the key and store it in a buffer, start some sort of
timer, and then go back to the dot/dash/space generation.
We could then periodically check for an elapsed time of 50
milliseconds or so. If 50 milliseconds had elapsed, we could
reset the timer and go back and repeat the process again.

A disk system would certainly let us perform the timing
since it counts in increments of 25 milliseconds. But we
may not have a real-time clock if we don’t have a disk
system. Is there some way to emulate the real-time-clock
function?

One way would be to establish a counter inside our
program. This software counter would count in increments
of 1 millisecond. As we’ll be using a subroutine to time the
cycles of the audio tone, we could use the delay count for
the delay subroutine to increment the counter by the
number of milliseconds delayed. For a continuous stream
of characters, this would give us a fairly accurate count of
elapsed time.

However, we don’t have a continuous stream of characters,
do we? Sure, some times we've buffered a large number of
characters, and they keep on being generated at the
current speed. But what about the case where the user is
doing a “hunt and peck” at the keyboard? If the counter is
only incremented during the time delays for the audio
tones, it certainly won’t be a record of elapsed time.

Well, we’ll be looping and waiting for that next character
from the keyboard and that loop should be at a fairly
constant speed. We can establish an increment of the
software millisecond counter every “n” times through the
loop. This should work for the rough elapsed time needed
for debounce. After all, it doesn’t matter too much whether

we delay 50 milliseconds or 100 milliseconds for a

294



maximum typing speed of 60 WPM (or five characters per
second). Is this the best way to handle this problem?
Probably not, but it’s one way given the constraints of the
system — no real time clock, no interrupts, and a need for
buffering.

To minimize the time required to rush out and poll the
keyboard, we'll need a fast keyboard scan routine, one that
determines quickly if a character is there, and if not,
returns to the calling routine. It'll also have to test for the
debounce delay time from the software counter.

Buffering

What about the problem of buffering? How do we store
the characters as they are read in and then transmit
them?

To do this we’ll need a buffer of a certain number of bytes.
As the characters are read from the keyboard, they are
stored in the next slot of the buffer. The cassette tone
output will have to somehow test the contents of the buffer
to see if there is any new character available for output.

If the operator is a very slow typist and the code speed is
slow enough, this buffer will be filled with one character
and then immediately emptied. However, if the operator is
fast and the code speed is slow, the buffer may fill up
rapidly with characters that are being input too fast to be
handled.

What about the size of the buffer? If the program runs for
any length of time, we’d need a very large buffer. A better
way to do this would be to establish a circular buffer
based on the worst-case input and output speed. We'll
assume that the operator can’t get more than 256
characters ahead before he gets confused! This should be
adequate for most of us.

The circular buffer is used as shown in Figure 13-3. A new
character goes into the next slot. A pointer to the next slot
is then incremented by one. If we reach the end of the
buffer, the pointer is set back to the beginning of the

295



buffer. A second pointer points to the “next character
available.” If the two pointers are equal, all characters
have been used. “Overrun” is possible if the number of
unused characters exceeds 256.

KEYBOARD HAS ACCEPTED: TRS-80 IS
PROGRAM HAS SENT: TRS-

o
i

POINTER TO NEXT CHARACTER

POINTER TO NEXT SLOT

256
BYTES

wl=lorioinl |OIDI

WHEN CHARACTER HAS
BEEN STORED HERE,
“POINTER TO NEXT SLOT”
RESETS TO BEGINNING

A

Figure 13-3. Circular Buffer

Conversion to Morse Code Characters

How will a given ASCII character be converted to a Morse
code character? We have 26 alphabetic characters, ten
digits, blank, and seven special characters to be concerned
with. The Morse code combinations are completely
unrelated to ASCII codes or to any other “neat” method of
finding the proper combination of dots and dashes.

296



The implication is that instead of a formula or
algorithmic means to produce the Morse code, we need to
translate an ASCII character into a Morse code character
by a table lookup. One Morse code configuration will be
in the table for each legitimate ASCII character.

What about storage of the dots and dashes in the table?
Each character we're concerned with is represented by six
or fewer dots or dashes, except for the “error” code. It looks
like we could use six codes for each character. One way to
do this would be to store a fixed eight-byte entry for each
character, with 0 representing a dot, 1 a dash, 2 a space,
and -1 a terminator (or we could pack two codes in each
byte).

After some thought, we came up with this: Each
combination of dots and dashes is held in 16 bits, or two
bytes. There are eight fields in the two bytes. Each field
contains a two-bit code. A code of 00 represents a dot, a
code of 01 represents a dash, a code of 10 is a dot space,
and a code of 11 is a terminator. The 8 fields read from
right to left. Each combination ends with a terminator
field of 11, allowing up to seven dots, dashes, or dot spaces,
plus a terminator.

This scheme is shown in Figure 13-4.

“yr = 351H / FIAST CODE
|eg [ge]gs] 11 [0 ]2 [8a]d1]
END DASH DASH DOT DASH
. J
v
READ FROM RIGHT TO LEFT
¢9=DOT DASH DOT DASH DOT END
@1=DASH
10= SPACE
1=TERMINATOR =y

Figure 13-4. Dot, Dash, Space
Coding

The special case of eight dots (“error code”) is represented
by two bytes of zeroes and is detected in the program.

297



Message Storage and Search

Messages are stored as ASCII character strings. A large
buffer capable of holding 10%257+1 or 2,571 characters
(and ten one-byte “headers”) is established. A minus one is
used as a terminator for the last message in the buffer.
Unused spaces in the buffer are filled with minus one
bytes.

All bytes in the buffer are either valid ASCII characters,
minus ones, or the binary digits 0 through 9. A binary
digit 0 through 9 marks the header of a message string.
The length of the string is determined by the next
occurrence of a digit, or a minus one.

Messages are put into the buffer as they are defined. A
search is made for the header number to find a specified
message. If a message is redefined, the old message is first
deleted by “moving up” the remaining buffer into the
space previously occupied by the message. This approach
is shown in Figure 13-5.

oLD NEW
MESSAGE 0 = “TEST” “TEST”
5= “TRS-80" “NEXT”
3= “LAST” “LAST”
] ] ]
T T T
3 E E
S S S
T T T
5 3 3
T L L
R A A
S S S
- T T
8 -1 5
o 1) » N
3 -1 E
L -1 X
A -1 T
S -1 -1
T -1 -1
-1 -1 -1
-1 -1 -1
MESSAGE 5 DELETE MES- ADD NEW
1S TO BE SAGE 5 BY MESSAGE S
CHANGED MOVING UP TO END OF
REMAINDER MESSAGES

Figure 13-5. Message Storage
298



Implementation
Modules

MORG is implemented as a series of five levels of modules,
shown in Figure 13-6. The top level of modules is the main
driver of the program. The bottom level of modules are
the most rudimentary subroutines of the program.

“HIGHEST LEVEL"

LEVEL1
DRIVER

LEVEL 2
DEFINE SPEED RANDOM XMIT PRINT NOPRANT

LEVEL 3
FNDMSG | SNDCHR OSPMES LPRINT DISCHR SCACLL | CLRCOM INPUTS

LEVEL 4
INPUT INPUTW | GETCHR RAND

LEVELS
SHIFT sus FILLCH DECBIN DELAY
“LOWEST
LEVEL"

Figure 13-6. MORG Modules

299



The modules are generally dedicated to a particular
well-defined function related to the MORG application,
such as “finding a message number” or “clearing the
communications area.” Each module is generally in the
form of a subroutine with one entry point and one exit
point. The lowest level of subroutines are general-purpose
subroutines, useful for many applications.

Figure 13-7 shows the modules and their interconnections.
Each module generally calls another module by a CALL,
with a set of parameters in the CPU registers. Higher level
modules usually call lower-level modules, although some
modules call other modules on the same level.

Hints and Kinks 13-4
Notes on Figure 13-7

The module interconnection diagram of Figure
13-7 reveals some interesting facts about the
structure of MORG. The level one driver not
only calls every level two routine but also
does applications-related processing by
calling level three routines, which are
special purpose routines for the Morse code
application. Level two routines also make
heavy use of level three routines.

If we see only one connection {dot} along any
horizontal connection to a module, it might
indicate that the modules should be
incorporated as ‘‘'in-line'’' code. This occurs
for SHIFT, SUB, and RAND.

300



SUOI}29UU0DIBIU|
3|NPON HHOW "2-€1 84nbig

301

) v e
AVi30 Nigoag HOHA ans 141HS
-
2
Jul
jal - Py "
aNvH HHOL3D MLNANI ANdN
[ [t
® 2
v m
@ Py "~
[ - N
SLNNI WOooH1D 10828 "HOSIa NI $3Ndsa HHOANS | DSWONI
@ ©~
e 2
P m
hd -
Al ° w
[
°
ANHJON ANIYd LINX WOONVY a3Rds ELYEED] N
[l
2
m
-
1 & 0
FERE m
m
r



6000

3C00
3Cu0
3ECO
3F00
3F40
3F80
3FCO
0002
0001
0064
0065
0004
03C0

8000
8001
8004
8oo7
8004
80oC
800F
8012
8015
8018
801B
861D
8020
8023
8026
8028
8028
802E
8031
8034

8037
8034
803D

To find the modules called by any particular module,
follow the horizontal line from the module to the extreme
left. When the line turns downward, read the lower level
module called by referencing the connection dots. The
arrangement of the modules is duplicated in the program
listing, that is, higher-level modules appear first, followed
by lower-level modules.

Tables, Buffers, and Variables

Refer to the MORG listing, Figure 13-8. Here is a set of
variables, buffers, and tables the program uses to define
system status, hold text, and facilitate conversion. The
variables are held in the working storage area of the
program, near the end. For the most part, their use is
explained by the comments associated with each one.

00100 ORG BOOOH
00110 {MORG-0820
00120 ;wwaswsnsnssesdMORSE CODE GENERATOR PROGRAMR#RASEERIZIZARA
00130
00140 ;
00150 ;RBEREILPEEORURRBEORLRSYSTEM EQUATES2SAIsssansasannnesssns
00160 ;
00170 SCREEN EQU 3CO00H $START OF VIDEO DISPLAY
00180 LINE1 EQU SCREEN+64 ;SECOND LINE
00190 LINE11 EQU SCREEN+704 ; TWELFTH LINE
00200 LINE12 EQU SCREEN+T768 s THIRTEENTH LINE
00210 LINE13 EQU SCREEN+832 ;FOUTEENTE LINE
00220 LINE14 EQU SCREEN+896 sFIFTEENTH LINE
00230 LINEt1S EQU SCREEN+960 ;SIXTEENTH LINE
00240 ENTER EQU 2 :ENTER CHARACTER
00250 CLEAR EQU 1 sCLEAR CHARACTER
00260 DBDEL EQU 100 ;DEBOUNCE DELAY IN MS
00270 DBDELP EQU DBDEL+1 +DEBOUNCE DELAY+1 MS
00280 MLDEL EQU 10 sMAIN LOOP DELAY IN 1/10 HMS
00290 SPEEDF EQU 960 ;FINAGLE FACTOR FOR SPEED
00300 ;
00310 SBANERRBRRARARARGFNBEMORSE EXECUTIVERERASRusunanRnuasony
00320
F3 00330 START DI sDISABLE INTERRUPTS
315994 00340 LD SP,TOPS ;SET STACK POINTER
11EA88 00350 LD DE,MBUF ;MESSAGE BUFFER ADDRESS
010BOA 00360 LD BC,2571 72571 BYTES
3EFF 00370 LD A,OFFH ;=1 FOR FILL
CD8385 00380 CALL FILLCH ;FILL MESSAGE BUFFER
21D204 00390 LD HL, 1234 ;INITIALIZE RANDOM # SEED
22E185 00400 LD (SEED) ,HL
212E16 00410 LD HL,5678
22E385 00420 LD {SEED+2),HL
3E20 00430 LD A, sBLANK CHARACTER
11003C 00440 LD DE, SCREEN 1START OF SCREEN
010004 00450 Lp BC.1024 7 # OF BYTES
CD8385 00460 CALL FILLCH sCLEAR SCREEN
3E8F 00470 LD A,08FH ;ALL ON GRAPHICS CHAR
11003F oo480 LD DE.LINE12 sLINE 12
014000 00490 LD BC,64 3¢ OF BYTES
CD8385 00500 CALL FILLCH 1DRAW LINE
21003C 00510 LD HL, SCREEN ;SCREEN START
22E985 00520 LD (CURCUR), HL sINITIALIZE CURRENT CURSOR
00530 ; REENTER HERE FOR MOST FUNCTIONS
216400 00540 MORO15 LD HL,DBDEL ;DEBOUNCE DELAY IN MS
CbCo85 00550 CALL DELAY iDELAY
216500 00560 LD HL,DBDELP ;MINIMUM DELAY +1

302



8o40
8043
8046
8049
go4cC
BO4F
8052
8055
8058
8058
805E
8061

8064
8066
8069
806C
806E
BO6F
8070
8072
8074
8077
8078
8078
807D
807E
8081
8083
8084
8086
8087
8089

808B
808E
8090
8093
8096
8097
8099
809C
809F
8042
8045
8046
8049
80AB
80AC
804D
80AF
80B1
80B5
80B7
80BA
80BD

80BE
80BF
8oco
80C1
8oc2
80cCc3
goch
80cCs
80C6
80CT
gocs
80cC9
80CA
80CB
8occe
000F

22ED85
21F592
22F085
22F285
2AE98S
22EB8S
CDFB83
21F48s
01403F
CD6D83
2AEB8S
22E98s5

1600
Ch2984
Cp1585
200F
14

TA
FEOA
20F2
2AEDSS
23
22ED85
18E7
BO
21CC80
060F
BE
2825
2B
10FA
E6TF

32DC85
3EFF
32DD85
21DC85
7E
FE20
Fagh 8o
CDBES83
CD8183
CDEO82
23
Ch298%4
18EB
48

oD
0600
cB21
pD21CD80
DDO9
DD660 1
DD6EOO

E9

ca
D3

BO
B1
B2
B3
B4
BS
B6
B7
B8
Bg
Do
CE

00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
06940
00950
00960
00970
00980
00590
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01130
01200
01210
01220
01230
01240
61250
01260
01270
01280
01290
01300
01310
01320
01330
01340

H

LD
LD
Lp
LD
LD
LD
CALL
LD
LD
CALL
LD
LD

(TSLC) , HL
HL, IBUF
(IBUFL).HL
(IBUFN),HL
HL, (CURCUR)
(LSTCUR), HL
CLRCOM
HL,MSG1
BC,LINE13
DSPMES

HL, (LSTCUR)
(CURCUR) , HL

JINITIALIZE FOR NEXT CHARACTER
s INPUT BUFFER ADDRESS
JINITIALIZE INPUT BUFFER PNTRS

sGET CURRENT CURSOR

{SAVE

sCLEAR COMMUNICATIONS AREA
;INITIAL MESSAGE

sLINE 13

;OUTPUT MESSAGE

sGET OLD CURSOR

; RESTORE

REENTER HERE DURING TRANSMISSION OF CHARACTERS OR HSGS
MOR0O20 LD
HOR021 CALL

CALL
JR
IkC
LD
CP

HOR022 OR

MORO25 CP

JR
DEC
DJINZ
AND
NOT FUNCTIGN H
LD
LD
LD

HOR027 LD

MOR030 LD

T e ae e

FUNCTION TABLE

TAB DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

FTABS EQU

BRANCH TABLE

D,0

INPUT
GETCHR
NZ,MORO22
D

A,D

MLDEL
NZ,MORO21
Hi, (TSLC)
HL
(TSLC) , HL
HOR020

B

HL,FTAB+FTABS-1

B, FTABS
(HL)
Z,MORC30
HL
MORO25
TFH

JINITIALIZE MINOR COUNT
$GET RESPONSE
;GET CHARACTER
GO0 IF PRESENT
;BUMP MINOR COUNT
iGET COUNT
;TEST FOR 1 MS
GO IF NOT 1 MS
iGET TIME
sBUMP BY 1 MS
i RESTORE
;CONTINUE
+MERGE SHIFT BIT
;FUNCTION TABLE END ADD
;FUNCTION TABLE SIZE
;TEST FOR FUNCTION
;G0 IF FOUND
;POINT TO NEXT FUNCTION
sCONTIRUE
+RESET BIT 7

ERE - TRANSMIT A SINGLE CHARACTER

(THP1},4
A.OFFH
(TMP1+1),4
HL,TMP1

A, (HL)

L]

M, MOR020
DISCHR
LPRINT
SNDCHR
HL

INPUT
MORG27
c,B

c

B,0

c
IX,BTAB
1X,BC
H(IX+1)
L, {IX)
(HL)

*D'+80H
*S'+80H
*R'+8CH
T0'+80H
'1'+80H
t21'+808
*3'+B0H
"4'+80H
151+ 80H
'6'+80H
T7'+80H
"81'+80H
19+ 80H
*P'+80H
*NT'+80H
$~-FTAB

;STORE IN TEMP BUFFER

i=1

$STORE TERMINATOR

;ADDRESS OF "MESSAGE"
;GET NEXT CHARACTER
;TEST FOR MNON-ASCII
;GO IF END OF MESSAGE
;DISPLAY CHARACTER
yPRINT IF REQUIRED
s SEND CHARACTER
sPOINT TO NEXT
;s TEST FOR INPUT
;CONTINUE SENDING

;INDEX+1 NOW IN C

;s ADJUST FOR INDEX

; INDEX NOW IN BC

;2% INDEX NOW IN BC

;BRANCH TABLE

;POINT TO BRANCH

;GET MSB OF ADDRESS

{GET LSB OF ADDRESS

1BRANCH QOUT

;DEFINE MESSAGE
;s DEFINE SPEED
s TRANSMIT RANDOM

; TRANSMIT MESSAGE ©
H 1
H 2
: 3
: 4
H 5
: 6
i 7
H 8
H 9
;SET PRINT

;RESET PRINT
;SIZE OF FUNCTIGN TABLE

303



80CD
80C¥F
80D1
80Dp3
80D5
80D7
80p9
80DB
80DD
80DF
BOE1
80E3
80ES
80ET
80E9

80EB
80EE
80F1
80F4
8OF7
80FA
80FD
80FF
8102
8105
8107
8104
810D
810E
8111
8114
8117
8114
811D
811E
8121

8123
8124
8125
8126
8127
8129
812¢C
812D
812F
8130
8131
8132
8135
8136
8138
8139
8134
813B
813D
8140
81k
8143
814y
8145
8147
8144

814D
814E
814F
8150
8152
8155
8157
8154
8158
§15¢C
815F
8161

EB80O
9181
F081
3782
3782
3782
3782
3782
3782
3782
3782
3782
3782
8B82
B182

2AE985
22EB8S
CDFB83
21F586
01403F
CD6D83
0601
CDOoD8y
C27F81
0601
CD9085
C27F81
7D
21C987
01803F
Cp6p83
2AEB8S
22E985
F5
¢DC782
2024

ES

D1

23

T8
FE20Q
FAZF81
23
18F7

3EFF
CD8385
cbC782

2AE985

304

61350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
41610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01600
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
61950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130

BTAB

DEFW
DEFWH
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFH
DEFW
DEFH
DEFW
DEFW

DEFINE
SPEED
RANDOM
AMIT
MIT
XMIT
XMIT
XMIT
XMIT
XMIT
AMIT
XMIT
XMIT
PRINT
NOPRNT

;DEFINE MESSAGE
;DEFINE SPEED

; TRANSMIT RANDOM
s TRANSMIT MESSAGE

WENOVEWN O

$SET PRINT
$RESET PRINT

;lil&!ﬂﬂlilll!lllDEFINE MESSAGE N ROUTINE®##auasssuasussnsad

DEFINE

DEF005

;GET CURRENT CURSOR

1 SAVE

+CLEAR COMMUNICATIONS AREA
;DEFINE MESSAGE

yLINE 13

;DISPLAY DEFINE MESSAGE
i1 CHARACTER

$GET CHARACTER

;G0 IF GT 1

;1 CHARACTER

;CONVERT TO BINARY

1G0 IF ERROR

sMSG # NOW IN 4

s INPUT MESSAGE

iLINE 18

;DISPLAY MESSAGE

sGET OLD CURSOR
sRESTORE

1SAVE MESSAGE #

3GET ADDRESS OF MESSAGE
;GO IF NO CURRENT MSG FOR #

; CURRENT MSG FOR # IN MBUF - MUST DELETE

DEF025

DEFG30

DEFO035

DEFO040

LD HL,(CURCUR)
LD (LSTCUR) ,HL
CALL CLRCOM
LD HL,MSG5
LD BC,LINE13
CALL DSPMES
LD B, 1
CALL INPUTS
JP NZ,DEF050
LD B, 1
CALL DECBIN
Jp NZ,DEF050
LD AL
LD HL,MSG11
LD BC,LINE14
CALL DSPMES
LD HL, (LSTCUR)
LD (CURCUR) , HL
PUSH AF
CALL FNDMSG
JR NZ,DEF035
PUSH HL
POP DE
INC HL
LD A, (HL)
CP L] 1
Jp M, DEF030
INe HL
JR DEF025
PUSH HL
POP BC
PUSH HL
LD HL, ENDM
OR A
SBC HL,BC
PUSH HL
POP BC
POP HL
LDIR
LD HL, ENDM
OR A
SBC HL,DE
PUSH HL
POP BC
LD A,OFFH
CALL FILLCH
CALL FNDMSG
: HL POINTS TO MESSAGE AREA,
POP AF
LD (HL), 8
INC HL
LD B,0
CALL INPUTH
cp ENTER
Jp Z,MORO15
LD (HL) (A
ING HL
CALL DISCHR
DJINZ DEFO40
LD HL, (CURCUR)

$SAVE START
;PUT IN DE
yBYPASS # TO TEXT
;GET CHARACTER
;TEST FOR NON~ASCIXI OR -1
;GO IF NEXT MESSAGE
sBUMP POINTER
sCONTINUE
$END

+SAVE NEXT AREA
;END OF MEMORY
sCLEAR CARRY

;# OF BYTES TO MOVE
s TRANSFER TO BC
yBYTE COUNT

i RESTORE SOURCE
;sMOVE MESSAGE DOWN
;END OF MEMORY

;FIND # OF BYTES REMAINING
; TRANSFER TO BC

=1
s FILL REMAINING WITH -18
;FIND FIRST -1
TOP OF STACK HOLDS MESSAGE ¢#
iGET MESSAGE ¢
;STORE IN MESSAGE AREA
sPOINT TO FIRST TEXT CHAR POS
sINITIALIZE COUNT OF CHARS
;GET NEXT CHARACTER
; TEST FOR ENTER CHAR
:1GO IF ENTER
;STORE IN MESSAGE AREA
;BUMP POINTER
;DISPLAY
GO IF NOT 256 CHARS
$GET CURRENT CURSOR



8164 22EB85 02140 LD (LSTCUR),HL $SAVE

8167 21EB8T 02150 LD HL,MSG12 $"256" CHARACTERS MESSAGE
816A 01CO3F 0216¢C LD BC,LINE1S
816D CD6D83 02170 CALL DSPMES ;DISPLAY WARNING MESSAGE
8170 21D00T7 02180 LD HL,2000 ;2000 MILLISECONDS
8173 CDCO85 g219¢ CALL DELAY ;DELAY 2 SECS
8176 Z2AEBS8S 02200 LD HL,{LSTCUR) sGET OLD CURSOR
8179 22E985 02210 LD (CURCUR), HL ;RESTORE
817C €33780 02220 JP MORO15 ;GET NEXT COMMAND
817F 21AA8T 02230 DEF050 LD HL,MSG10 ;ERROR MESSAGE
8182 01803F 02240 Lp BC,LINE14 sLINE 14
8185 CD6D83 02250 CALL DSPMES ;DISPLAY ERROR MESSAGE
8188 21D007 02260 LD HL,2000 ;2000 MILLISECONDS
818B €DCO8S 02270 CALL DELAY ;DELAY 2 SECS
818E C3F180 02280 Jp DEF005 s TRY AGAIN
02290 ;
02300 ;HES¥NSERDIGTENGISSRESET SPEED ROUTINERESRZIRIZGSNEIERSIED
02310
8191 2AE985 02320 SPEED LD HL, (CURCUR) $GET CURRENT CURSOR
8194 22EBS8S 02330 LD {LSTCUR),HL ;SAVE
8197 CDFB83 02340 SPE0O5 CALL CLRCOHM ;CLEAR COMMUNICATION AREA
8194 21CB86 02350 LD HL ,MSGY4 ;SPEED MESSAGE
819D 01403F 02360 LD BC,LINE13 sLINE 13
81A0 CD6D83 02370 CALL DSPHES ;DISPLAY SPEED MESSAGE
8143 0602 02380 LD 8,2 ;32 CHARS
8145 CDOD8A 02390 CALL INPUTS ;GET CHARACTER STRING
8148 2035 02400 JR NZ,SPEO20 ;G0 IF GT 2 CHARACTERS
81AA CDY085 02410 CALL DECBIN ;CONVERT TO BINARY
81AD 2030 02420 JR NZ,SPEG20 ;GO IF ERROR
81AF 7D 02430 LD A,L $GET SPEED 0-99
81B0 FEO3 02440 cp 3 sTEST FOR 3 WPM
81B2 FADF81 02450 JP 4, SPE020 ;GO IF LT 3 WPM
81B5 FE3D 02460 P 61 sTEST FOR 60 WPM
81B7 F2DF81 02470 JP P, SPEO20 ;GO IF GT 60 WPM
81BA 21C003 g2480 LD HL, SPEEDF ;1200/WPM=DOTO TIME
81BD 4F 02490 Lp C,A ;WPM LS BYTE
81BE 0600 02500 LD B,0 sNOW IN BC
81C0 11FFFF 02510 LD DE, -1 $QUOTIENT
81C3 BY 02520 SPEQ15 OR A ;ZERO C
81C4 ED42 02530 SBC HL,BC ;DIVIDE BY SUCCESSIVE SUB
81c6 13 02540 INC DE :BUMP QUOTIENT
81C7 30Fa 02550 JR NC,SPEO15 ;GO IF NOT NEGATIVE
81C9 EDS3ES85 02560 LD {DOTO),DE {STORE DOT ON TIME
81CD 210000 02570 LD HL,O
81p0 19 02580 ADD HL,DE {FIND 3%DOTO
81Dt 19 02590 ADD HL,DE
81p2 19 02600 ADD HL,DE
81D3 22ET785 02610 Lp {DASHO), HL $STORE DASH ON TIME
81D6 2AEB8S 02620 LD HL,{LSTCUR) ;GET OLD CURSOR
81D9 22E985 02630 LD (CURCUR), HL s RESTORE
81DC C33780 02640 JP MORO 15 sBACK TO DRIVER
81DF 212087 02650 SPE020 LD HL,MB5G6 sERROR MESSAGE
81E2 01803F 02660 LD BC,LINE14 sLINE 14
81E5 CD6D83 02670 CALL DSPMES ;DISPLAY ERROR MESSAGE
81E8 21D007 02680 Lp HL, 2000 ;2000 MILLISCS
81EB CDC085 02690 CALL DELAY ;DELAY 2 SECS
81EE 18A7 02700 JR SPEQOS :TRY AGAIN
02710 ;
02720 ;E%8888888083TRANSMIT RANDOM CHARACTERS ROUTINEREZEZSROESSS
02730 ;
81F0 2AE985 02740 RANDOM LD HL, {CURCUR) $GET CURRENT CURSOR
81F3 22EB85 02750 LD (LSTCUR), HL :SAVE
81F6 CDFBS83 02760 CALL CLRCOM sCLEAR COMMUNICATION AREA
81F9 213F87 02770 LD HL , MSG7 ;RANDOM MESSAGE
81FC O01403F 02780 LD BC,LINE13 sLINE 13 POSITION
81FF CD6D83 02790 CALL DSPHES ;DISPLAY RANDOM MESSAGE
8202 EDSF 02800 LD 4,R sGET REFRESH COUNT (RANDOM)
8204 32E485 02810 LD (SEED+3},4A ;INITIAL SEED
8207 3E20 02820 LD A, 7 T BLANK
8209 32EF85 02830 LD (LASTR), 4 yINITIALIZE LAST RANDOM CHAR
820C 2AEB8S 02840 Lb HL, (LSTCUR) jGET OLD CURSOR
820F 22E985 02850 LD (CURCUR) , HL ;s RESTORE
8212 CD4285 02860 RANO10 CALL RAND ;GET RANDOM # 0-127
8215 211288 02870 LD HL,CTAB sCHARACTER TABLE
8218 09 02880 ADD HL,BC ;POINT TO CHARACTER
8219 7E 02890 LD A, {(HL) sGET ASCII CHARACTER
8214 FE20 02900 cp L ;TEST FOR BLANK
821C 2008 02910 JR NZ,RANC20 ;GO IF NOT BLANK
821E ES 02920 pUsSH HL ;SAVE HL

305



821F
gz22
8223
8224
8226
8229
g8a22¢
822F
8232
8235

8237
8234
823D
8240
8243
8244
82u7

8244
8248
824D
824E
8250
8253
8255
8256
8254
825E
825F
8261
8264
8267
8264
826D
B26E
8271
8273
8276
8279
827¢C
827F
8282
8285
8288

8288
828E
8291
8293
8296
8299
829¢C
829F
824A2
8245
8248
82AB
82AE

8281
82B2
82B5
82B8
82BB
82BE
82¢C1
8acu

21EF85
BE

E1
28EC
CDBES83
cD8183
CDEO82
32EF85
CD2984
18DB

2AE985
22EB8S
CDFB83
216 AB7
5

01403F
CD6D83

(]
CB39
79
D603
cpC782
201E
23

ED5SBEBS8S
ED53E985

7E
FE20
FA3780
CDBEB3
CD8183
CDE082
23
CD2984
18EB
219587
01803F
CD6D83
21E803
CDCO8S
2AEB8S
22E985
C3378¢0

2AE985
22EB85
3E01

32DEB5
CDFB83
21B586
01403F
CD6DB3
21E803
CDhCO085
2AEBS8S
22E985
33780

AF

32DESS
32DF85
2AE985
22EB85
CDFB83
21BF86
c39c82

306

02930
02940
02950
02960
02970
02980
02690
03000
43010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
43250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710

LD
cP
POP
JR
CALL
CALL
CALL
LD
CALL
JR

LD
LD
LD
LD
CALL
LD
LD
CALL
LD
CALL
LD
LD
JP

HL,LASTR
(HL)

HL
Z,RANO1O
DISCHR
LPRINT
SNDCHR
(LASTR), A
INPUT
RANO10

LD HL, (CURCUR)

LD (LSTCUR}, HL

CALL CLRCOM

LD HL ,MSG8

PUSH BC

LD BC,LINE13

CALL DSPMES
MESSAGE #%2 STILL IN BC

POP BC

SRL c

LD A.C

sSUB 3

CALL FNDMSG

JR NZ,¥MT020

INC HL

LD DE,(LSTCUR)

LD (CURCUR}, DE

LD A, (HL)

Cp 1 L]

JP M, MORO 15

CALL DISCHR

CALL LPRINT

CALL SNDCHR

INC HL

CALL INPUT

JR XMTO10

LD HL,MSG9

LD BC,LINE1H

CALL DSPMES

LD HL,1000

CALL DELAY

LD HL, (LSTCUR)

LD (CURCUR), HL

Jp MORO15

HL, (CURCUR)
(LSTCUR),HL
A,1
{PRINTF),A
CLRCOM
HL,MSG2
BC,LINE13
DSPMES

HL, 1000
DELAY
HL,{LSTCUR)
(CURCUR),HL
MORO 15

NO PRINT ROQUTINE

; ADDRESS OF LAST CHAR
;s TEST AGAINST LAST
:RESTORE HL

;DON'T SEND 2 BLANKS
;DISPLAY CHARACTER

s+ PRINT IF REQ'D

$+SEND CHAR

$SAVE FOR NEXT COMPARE
;s TEST FOR CLEAR

;BACK TO NEXT CHAR

;Il!l!lll&li!ﬁllTRANsMIT MESSAGE N ROUTINE@®Rassasssszans

;GET CURRENT CURSOR

;SAVE

;CLEAR COMMUNICATION AREA
; TRANSMIT MESSAGE

;SAVE MSG#+3%2

;LINE 13 POSITION
;DISPLAY TRANSMIT MESSAGE

;RETRIEVE MSG#+3%2
;MESSAGE #+3 IN BC
sMESSAGE #+3 IN A
;MESSAGE # IN A
;GET ADDRESS OF MESSAGE
;GO IF NONE
;BYPASS #
;GET OLD CURSOR
;RESTORE
3GET NEXT CHARACTER
;TEST FOR NON-ASCII
;GO IF END OF MESSAGE
;DISPLAY CHARACTER
;PRINT IF REQ'D
;SEND CHAR
;POINT TO NEXT
;TEST FOR CLEAR
;CONTINUE SENDING
;ERROR MESSAGE
;LINE 14 POSITION
;DISPLAY ERROR MESSAGE
;1000 MILLISECS
;DELAY 1 SEC
;GET OLD CURSOR
;s RESTORE
;BACK TO EXECUTIVE

;innnucunulanln§niclng PRINT ROUTINE#esssscsocesnasssssse

$GET CURRENT CURSOR

i SAVE

;PRINT FLAG ON

;i STORE

sCLEAR COMMUNICATION AREA
;PRINT MESSAGE

sLINE 13

;DISPLAY PRINT MESSAGE
;1000 MILLISECONDS
sDELAY 1 SEC

3GET OLD CURSOR
;RESTORE

;BACK TO DRIVER

XOR A :PRINT FLAG OFF
LD (PRINTF), A :STORE
LD (LPFTF),A {RESET FIRST TIME FLAG
LD HL,(CURCUR) ;GET CURRENT CURSOR
LD (LSTCUR), HL {SAVE
CALL CLRCOM ;CLEAR COMMUNICATIONS AREA
LD HL  MSG3 ;NO PRINT MESSAGE
Jp PRI0IO :GO TO DISPLAY, DELAY -
< RERGRANARBDERARBERNBRENDMSG SUBROUTINE"..I“IIGHIII‘.IIQQ
FINDS MESSAGE BY SCANNING MBUF FOR 0-9. 0-9 IS -
MESSAGE #. ASCII CHARACTERS ARE CHARACTERS TO s
BE SENT. -1 IS PADDING AT END OF MESSAGE. '



82c¢7
8zc8
8z2CB
82¢cp
82CE
82D0
82D3
82D4
82D5
8206
82p7
82DA
82DD
82DF

82E0
82E1
82E2
82E3
82E5
82E8
82EB

82ED
82EE
82F0
82r2
82F5
82F7
82FA
82FD
82FE
82FF
8300
8302
8304
8306
8308
8304
830¢
830D
830F
8311
8313
8315
8317
8319
831¢C
831D
8320
8321
8323
8324
8325
8326

8327
8324
832D
8330
8333

8335

F5

C5

E5
DDES
213D88
012C00
EDBY

C5
DDE1
Dp2g
019288
Dbog
DDEEOO
DD660 1
E5

2AE585
CD3D83
2AE585
CD5683
18C9

2AET85

03720 :* ENTRY: (A)=MESSAGE # @
03730 ;@ EXIT: (HL)=POINTER TO MESSAGE IF Z OR *
03740 ;¥ POINTER TO NEXT AVAILABLE IF NZ L
03750 ¥ RESET »
03760 :® ALL REGISTERS SAVED EXCEPT HL .
03770

03780 FNDMSG PUSH BC :SAVE BC

03790 CALL FNDSR :SEARCH

03800 JR Z,FNDO20 ;GO IF FOUND

03810 PUSH AF iSAVE NOT FND FLAG

03820 LD A,0FFH ;FOR FIRST AVAILABLE
03830 CALL FNDSR s SEARCH

03840 POP AF iGET FLAG

03850 FNDO20 POP BC ;RESTORE BC

03860 DEC HL ;ADJUST HL

03870 RET :RETURN

03880 FNDSR LD HL MBUF ;START OF MSG BUFFER
03890 LD BC,2571 ;SIZE OF MBUF

03900 CPIR ; COMPARE

03910 RET ;RETURN

03920 3

03930 ;#¥aARUSGRSRRRSRSEND CHARACTER SUBROUTINE®SSSussassnsnzas
03940 ;%  SENDS A SINGLE CHARACTER AT CURRENT SPEED BY OUT- *
03950 ;* PUTTING A 500 HERTZ TONE TO CASSETTE. i
03960 ;% ENTRY: (A)=ASCII CHARACTER »
03970 ;*® ALL REGISTERS SAVED. *
03980 ;

03990 SNDCHR PUSH AF 3 SAVE REGISTERS

04000 PUSH BC

04010 PUSH HL

04020 PUSH IX

ouo3o LD HL,CDTAB+CDTABS-1 ;ADDRESS OF CODE TAB END
os0u0 LD BC,CDTABS ;SIZE OF CODE TABLE

04050 CPDR ;SEARCH CODE TABLE

05060 ; MUST BE FOUND!

05070 PUSH BC

01080 POP IX s INDEX IN HL

4090 ADD IX.IX ;2%INDEX IN HL

04100 LD BC,TTAB sTIMING TABLE ADDRESS
04110 ADD IX,BC ;POINT TO TIMING CHAR
04120 LD L,(IX) :GET TIMING CHAR

04130 LD H,{IX+1)

04140 PUSH HL ;SAVE HL

04150 SNDO10 POP HL sGET CURRENT HL

08160 LD A,L sGET NEXT 2 BITS

04170 SRL H ;ALIGN FOR NEXT NIBBLE
04180 RR L

04190 SRL H

04200 AR L

0u210 SET 7.H {SUBTLETY HERE-TERMINATOR!
04220 SET 6,H

04230 PUSH Hi iSAVE CURRENT HL

on2490 AND 3

04250 JR 2,D0T ;GO IF DOT

cha6o cP 1 ;DASH=1

04270 JR Z,DASH ;GO IF DASH

04280 cp 2 ;DOT SPACE=2

04290 JR Z,SPACE 1GO IF SPACE

04300 LD HL,(DOTO) ; INTERCHAR SPACE=3

on310 ADD HL, HL ;29DOTO+PREVIOUS DOTO
04320 CALL COFF sDELAY 2 DOT TIMES

04330 POP HL sRESET STACK

04340 POP X ;RESTORE REGISTERS

04350 POP HL

04360 POP BC

04370 POP AF

04380 RET +RETURN

04390 ;

04400 : DOT HERE

o4410 ;

04420 DOT LD HL,{DOTO) ;DOT ON TIME

04430 CALL CON ;TOGGLE CASSETTE OUT
04440 SPACE LD HL,{DOTO) ;DOT OFF TIME=DOT ON TIME
05450 CALL COFF :DELAY

04460 JR SNDO10 sRETURN FOR NEXT NIBBLE
os470

04480 ; DASH HERE

05490 ;

04500 DASH LD HL,(DASHO) ;DASH ON TIME

307



8338
833B

833D
833F
8340
8343
8345
8347
8348
834B
834E
8351
8352
8353
8355

8356
8358
8359
835¢C
835E
835F
8362
8365
8368
8369
8364
836¢C

836D
836E
836F
8370
8371
8372
8374
8375
8376
8377
837B
837D
837E
837F
8380

8381
8382
8383
8384
8387
8388
8389
838B
838E
838F
8391
8394
8395

CD3Dp83
18F0

3E01
2B
Q1FFFF
EE03
D3FF
E5
210100
CDCO85
Cb2984
E1

09
38EE
c9

EEQO
2B
O1FFFF
D3FF
ES
210100
cpcoss
CD2984
E1

09
38F2
c9

EDU3EG85
18F3

E1

ct

Ft

cg

C5

ES

47
3ADES8S
B7

78
2821
3ADF85
BY
2007
32E085
3¢
32DF85

308

04510
04520
04530
o4s40
04550
04560
04570
04580
04590
04600
04610
04620
04630
04640
04650
04660
04670
04680
04690
ou700
04710
Q4720
04730
05740
04750
04760
04770
cu780
04790
04800
ou810
ousdzo
ou830
04840
04850
04860
04870
04880
04890
04900
04910
04920
04930
ohgn0
04950
04960
04970
04980
04990
045000
05010
05020
05030
05040
05050
05060
05070
05080
05090
05100
05110
05120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260

i

CALL
JR

CON
SPACE

; TOGGLE CASSETTE OUT
;DASH OFF TIME=DOT OFF TIME

ON HERE - GENERATE 500 HERTZ TONE

i
CON

LD 4,01 ;0N

DEC HL ;s ADJUST FOR "JR C7

LD BC,~1 ;DECREMENT
ONO10  XOR 3 : TOGGLE

ouT (OFFH), A ;OUTPUT TO CASSETTE LATCH

PUSH HL SSAVE COUNT

LD HL,1 ;FOR 1 MS

CALL DELAY ;DELAY 1 MS

CALL INPUT :GET POSSIBLE CHARACTER

POP HL ;GET COUNT

ADD HL,BC ;DECREMENT COUNT

JR c,0N010 ;G0 IF NOT -1

RET ;RETURN
: OFF HERE
3
COFF XOR 0

DEC HL 1 ADJUST FOR "JR C°

LD BC,~1 s DECREMENT

ouT (OFFH) A ;OUTPUT TO CASSETTE LATCH
OFF010 PUSH HL :SAVE COUNT

LD HL, 1 ;FOR 1 MS

CALL DELAY ;DELAY 1 MS

CALL INPUT ;GET POSSIBLE CHARACTER

POP HL ;GET COUNT

ADD HL,BC :DECREMENT COUNT

JR ¢,0FF010 ;GO IF NOT -1

RET ;RETURN
;!IIIG!Q!IO!!IGDISPLAY MESSAGE AT LOCATION NEBRHRBOOEGRRERD
;% DISPLAYS MESSAGE AT GIVEN SCREEN POSITION. TER- ®
;%  MINATES ON NULL (ZERO). @
;®  ENTRY: (HL)=MESSAGE LOCATION €
e (BC)=SCREEN POSITION s
;%  ALL REGISTERS SAVED. s
;
DSPMES PUSH AF ;SAVE REGISTERS

PUSH BC

PUSH HL
DSPOO5 LD A, {HL) ;GET MESSAGE CHAR

OR A s TEST FOR 0

JR Z,DSPO10 ;RETURN IF DONE

LD (BC),A ;STORE CHARACTER

INC BC ;BUMP SCREEN POINTER

INC HL ;BUMP MESSAGE POINTER

LD {CURCUR),BC :SAVE POINTER

JR DSP0OOS ;CONTINUE
DSPO1G  POP HL ;RESTORE REGISTERS

POP BC

POP AF

RET :RETURN

;!il&lill&n!li!iﬁlllL?RINT SUBROUTINE®ERGosaGanasesnsaoss
* QUTPUTS CHARACTER TO SYSTEM LINE PRINTER IF PRINT #
# FLAG IS SET. 8
# ENTRY: (

% ALL REGISTERS SAVED.

PUSH
PUSH
LD
LD
OR
LD
JR
LD
OR
JR
LD
INC
LD

A}=ASCII CHARACTER

BC
HL
B.A
A, {(PRINTF)

A
A.B
Z,LPROGO
A, (LPFTF)
A
NZ,.LPRO10
(CHARCT) , A
A
(LPFTF),A

i
*

{SAVE REGISTERS

SAVE CHARACTER

;GET PRINT FLAG

s TEST

;RESTORE A FOR POSSIBLE RTHN
sRETURN IF NOT SET

;GET LINE PRINTER 1ST TIME
;s TEST

;GO0 IF HOT FIRST TIME
INITIALIZE CHAR COUNT

71 TO &

;SET FIRST TIME FLAG



8398
839B
839D
839F
83241
8344
8345
8348
834B
83AC
834D
83AE

B3AF
83B0
8383
83B5
83B7
8389
8384
83BD

83BE
83BF
83Co
83C3
83CY
83¢CT
83c8
83CB
83cc
83CE
83D0
83D3
83Dy
83D5

8306
83D7
8308
83D9
83DA
83DD
83E0
83E3
83E5
83E8
83EA
83ED
83F0
83F3
83F6
83F7
83F8
83F9
83FA

3AE085
E61F
2005
3E0D
CDAF83
78
CDAF83
21E085
34

E1

[

c9

F5
3AE837
E6F0
FE30
20F7
F1
32E837
€9

F5

C5

D5

ES
11003¢C
21403¢C
010003
EDBO
11C03E
3E20
014000
CD8385
21C03E
22E985
Et

D1

c1

F1

cg

LPRO10 LD A, (CHARCT) iGET CHARACTER COUNT

AND 1FH :GET 0-31 COUNT

JR NZ,LPROZ20O ;GO IF NOT 32ND

LD A,O0DH s$CARRIAGE RETURN

CALL LPSTAT ;s TEST STATUS AND OUTPUT
LPRO20 LD A,B i RESTORE CHARACTER

CALL LPSTAT ;TEST BUSY AND OQUTPUT

LD HL,CHARCT ; CHARACTER COUNT

INC {HL) iBUMP CHARACTER COUNT
LPRO90 roOP HL ;RESTORE REGISTERS

POP BC

RET ;s RETURN
i LINE PRINTER STATUS AND PRINT CHARACTER SUBROUTINE
LPSTAT PUSH AF $SAVE CHAR
LPS010 LD A,(37E8H) ;GET STATUS

AND OFQ0H iMASK OUT GARBAGE BITS

cp 30H iTEST FOR BUSY

JR NZ,LPS010 :1GO IF BUSY

POP AF ;RESTORE CHAR

LD (37TEBH), A ;0UTPUT

RET s RETURN
;llllll!lllllllDISPLAy CHARACTER SUBROQUTINE®#:Resssssnassus
Hd QUTPUTS ONE CHARACTER TO CURRENT CURSOR POSITION @
A ON SCREEN. MOVES CURSOR TO NEXT POSITION UNLESS i
A LAST CHARACTER POSITION OF LINE 11. IF LATTER, #
; ® SCROLLS UP FIRST. i
Hd ENTRY: (CURCUR)=CURRENT CURSOR POSITION #
H (A)=CHARACTER TO BE' OUTPUT 8
3 * ALL REGISTERS SAVED. *
H
DISCHR PUSH BC ;SAVE REGISTERS

PUSH HL

LD HL, (CURCUR) iGET CHARACTER POSITION

LD (HL),A i STORE CHARACTER

LD BC,3CO0H+T6T $iLAST CP OF LINE 11

INC HL ;BUMP CURSOR

LD (CURCUR), HL ; STORE

OR A sRESET CARRY

SBC HL,BC ;TEST FOR LAST

JR NZ,DISO10 sRETURN IF NO SCROLL

CALL SCROLL ;SCROLL UP
DISO10 POP HL iRESTORE REGISTERS

POP BC

RET ; RETURN
;llll.lilllll!llscROLL SCREEN SUBROUTINERS#SRSSRBusRasssen
Hid SCROLLS LINES 1-11 UP TO LINES 0-10. FILLS LINE 11 #
HA WITH BLANKS. *
; ENTRY: NO PARAMETERS hd
;e ALL REGISTERS SAVED. *
H
SCROLL PUSH AF ;SAVE REGISTERS

PUSH BC

PUSH DE

PUSH HL

LD DE, SCREEN sSTART OF SCREEN

Lp HL,LINE1 iLINE 1

LD BC, 1024-256 ;¢ TO MOVE

LDIR ;MOVE EM

LD DE,LINE11 ;START OF LINE 11

LD A,r ¢ s SPACE

LD BC,64 i# TO FILL

CALL FILLCH ;FILL LINE

LD HL,LINE11 sSTART OF LINE 11

Lp (CURCUR), HL iRESET

POP HL ;RESTORE REGISTERS

POP DE

POP BC

POP AF

RET ;s RETURN
H
(PURNBEBERNCLEAR COMMUNICATION AREA SUBROUTINE#2susssanas
Hi CLEARS SYSTEM COMMUNICATION AREA »
Hd ENTRY: NO PARAMETERS b
HAd ALL REGISTERS SAVED. .
H

309



83FB
83FC
83FD
83FE
8400

F5

c5

D5
3E20
11403F
8403 01C000
8406 CD8385
8409 D1
8u0A C1
840B F1
840C €9

840D 2AE985
8410 ES
8411 0k
8412 OEO0O
8414 C5
8415 CDF384
8418 C1
8419 FEG2
841B 2809
841D 0C
841E CDBEB3
8421 10F1
8423 3EFF
8425 BY
8426 E1
8427 41
81528 €9

8429
8424
842D
842E
8431
8432
8433
8436
8439
8434
843¢C
B843E
8441
8uu2
8443
8448
84u7
8hya

2AEDSS
016400
BY
ED42
3879
210138
TE

B7
2007
CB25
F24184
1868

8uuc
844D
BULE
8450
8452
8454 18F8
8456 C6FF
8458 o4

8459 CB39
845B 30FB

310

4F
AF
CB3D
3804
608

06060
06070
06080
06090
06100
06110
06120
06130
06140
06150
06160
06170
06180
06190
06200
06210
06220
06230
062ko
06250
06260
06270
06280
06290
06300
06310
06320
06330
06340
06350
06360
06370
06380
06390
06400
0610
06420
06430
Q6440
06450
06460
06470
06480
06490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610
06620
06630
06640
06650
06660
06670
06680
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06800
06810
06820
06830
06840

CLRCOM PUSH AF ;SAVE REGISTERS

PUSH BC

PUSH DE

Lp A, iBLANK

LD DE,LINE13 ;START OF TEXT AREA

LD BC,192 ;3 LINES WORTH

CALL FILLCH +FILL WITH BLANKS

POP DE ;RESTORE REGISTERS

POP BC

POP AF

RET RETURN
;lﬂliiii&lﬂila!nleUT STRING SUBROUTINE®Z#assasaunsnsnasas
H INPUTS STRING OF CHARACTERS AT CURRENT COMMUNICA- #
;8 TION AREA. TERMINATED BY ENTER. #
Had ENTRY: {(B)=MAXIMUM NUMBER #
VB (CURCUR)=CURRENT CURSOR POSITION &
HAd EXIT: (B)=ACTUAL NUMBER INPUT #
i 8 (HL)=FIRST CHARACTER LOCATION 2
o8 NZ IF GT MAXIMUM NUMBER 2
i 2 Z IF LE MAXIMUM NUMBER 2
H ALL REGISTERS SAVED EXCEPT HL.BC,A ®
INPUTS LD HL,(CURCUR) ;CURRENT CURSOR POSITION

PUSH HL 3 SAVE

INC B ;BUMP MAXIMUM

LD c,0 sINITIALIZE COUNT OF CHARS
INS010 PUSH BC ;SAVE COUNTS

CALL INPUTW ;GET CHARACTER

POP BC sRESTORE COUNTS

cp ENTER ;TEST FOR DONE

JdR Z,INSO30 :GO IF ENTER

INC c ;BUMP CHARACTER COUNT

CALL DISCHR ;DISPLAY

DJINZ INSO10 ;GO IF NOT MAXIMUM

LD A,OFFH ;=1 TO A

OR A sRESET Z FLAG
INSO30 POP HL RETRIEVE START

LD B,C sGET CHARACTER COUNT

RET ;RETURN
;llﬁlliiillilﬂil]{EyBoAﬂD INPUT SUBROUTINEDUREAZRsNRERARGR
Hd IF DEBOUNCE DELAY LESS THAN ELAPSED TIME, SCANS #
i KEYBOARD AND STORES POSSIBLE INPUT CHARACTER IN 2
I CIRCULAR INPUT BUFFER. #
1 ENTRY: NO PARAMETERS @
;®  EXIT: NO PARAMETERS #
3 @ ALL REGISTERS SAVED ®
A CLEAR CHARACTER CAUSES RESTART AT MORO15H, SP RESET®?
i
INPUT PUSH AF ;SAVE REGISTERS

LD A,(387FH) $ALL IN ONE SWELL FOOP

OR A ; TEST FOR ANY KEY

Jp Z,INPO6S ;GO IF NONE

PUSH BC

PUSH HL

LD HL,(TSLC) $GET TIME SINCE LAST CHARACTER

LD BC,DBDEL +MINIMUM DELAY

OR A ;RESET CARRY

SBC HL.BC : COMPARE

JR C,INPO6OQ ;G0 IF LT DEBOUNCE DELAY

LD HL,3801H ROW 0 ADDRESS
INPOIO LD A, (HL) ;GET ROW VALUE

OR 4 ;TEST FOR NON-ZERO

JR NZ,INPO2C GO IF INPUT

SLA :SHIFT ROW ADRESS

JP P, INPO10 iMORE TO GO

JR INPOGO s RETURN
; CONVERT ROW, COLUMN TO INDEX
INPO20 LD C.a ;ROW VALUE

XOR A 3ZERO A
INPC25 SRL L ;SHIFT ADDRESS

JR C,INPO35 ;GO IF DONE

ADD A.8 JROWES

JR INPO25 ; CONTINUE
INPO3S LD B,0FFH ;COLUMN COUNT
INPO4O INC B sBUMP COUNT

SRL c SHIFT ROW VALUE

JR NC,INPOUO ;CONTINUE UNTIL 1 BIT



845D
845E

845F
8461
846
8465
8466
8u67
8469
8ub A
846D
B46E
8uU6F
8470
8472
8474
8476
8478
BL7A
847¢C
84TE
8480
8482
8485
8488
8488
848¢C
84BE
8491
8494
8497

8494
849D
849E
849F
8440
8443
B4 A6
8447
8449
84 AB
84 AE
84B1
84 BY
84B7
84B8
84 B9
84BA

84 BB
84BC

guyc3
8ucs
84D3

84D6
84D7
84D8
B4Dg
84DA
84DB

B4E3

84E5
84E6
84ET

84EB
B4EC
84ED
BY4EE

80
4F

0600
21BB8Y
09

7E

B7
284E
F5
3A8038
oF

47

F1
FE2F
2804
FE2D
2006
CB78
2802
CBET
FEQ1
2018
315994
24E985
01403F
B7
ED42
FA978Y4
2AEB85S
22E985
€33780

2AF285
BO

77

23
22F285
01F593
B7
EDh2
2006
21F592
22F285
210000
22EDBS
E1

c1

F1

c9

42 43
49 44
51 52

59 54

31 32

2D 2E

L
4B

53

33

2F

06850
06860
06870
66880
06890
06300
06910
06920
06930
06940
06950
06960
06970
06980
06990
07000
07010
07020
07030
07040
07050
07060
07070
07080
07090
07100
07110
07120
07130
07140
07150
07160
07170
07180
07190
07200
07210
07220
07230
07240
07250
07260
07270
07280
07290
67300
07310
07320
07330
07340
07350
07360
07370
07380
07390
45 46
07400
4C 4D
07410
54 55
07420

07430
07440
07450
07460
07470
07480
34 35
07490

07500
07510
07520

67530
07540
07550
07560

; FIND TABLE ENTRY

INPOS2

INPOSS

INPOSH
i STORE
INPOST

INPOS9
INPOGO

INPO6S

H
s KEYBOARD LOCK

KBTAB
47
4E 4F

56 57

36 37

;ROW®=8+COL
; TRANSFER TO C

;NOW IN BC

yADDRESS OF LOOK UP TABLE

:POINT TO VALUE
tGET VALUE

s TEST CHARCTER
;GO IF NOT VALID
$SAVE CHARACTER
;GET SHIFT

tALIGN TO BIT 7
;PUT IN B
sRESTORE CHARACTER
3 TEST FOR SLASH
sGO IF SLASH
;TEST FOR MINUS
sNEITHER

;TEST FOR SHIFT
;GO IF LOWER CASE
3/ TO 2?2 OR - TO =
;TEST FOR CLEAR
;GO IF NOT CLEAR

yRESET STACK, DROP REGS

sGET LAST CURSOR POSN

iSTART OF COMM AREA
sCLEAR CARRY

s COMPARE

;GO IF IN TEXT AREA
3yGET TEXT AREA PNTR
RESET CURSOR POSN

sRETURN TO EXEC

CHARACTER IN CIRCULAR INPUT BUFFER

ADD A,B

C,A
LD B,0
LD HL,KBTAB
ADD HL,BC
LD A, (HL}
OR a
JR Z,INP060
PUSH AF
LD A,(3880H)
RRCA
LD B, A
POP AF
CP 7t
JR Z,1KPO52
CP LI
JR NZ,INPOSS
BIT 7,8
JR Z,INPO55
SET 4,4
ce CLEAR
JR NZ,INPOST
LD 3P, TOPS
LD HL,{CURCUR)
LD BC,LINE13
OR A
SBC HL,BC
JP M, INP0OS6
LD HL,(LSTCUR)
LD (CURCUR) , HL
JP MORO15
LD HL, (IBUFN)
OR B
LD (HL), A
INC HL
LD (IBUFN),HL
LD BC,IBUFE
oR A
SBC HL,BC
JR NZ,INPOS9
LD HL,IBUF
LD (IBUFN),HL
LD HL,0
LD (TSLC),HL
POP HL
POP BC
POP AF
RET

DEFB
DEFM

DEFM

DEFM

DEFHM

DEFB
DEFB
DEFB
DEFB
DEFB
DEFHM

DEFM

DEFB
DEFB
DEFM

DEFB
DEFB
DEFB
DEFB

sGET POINTER TO NEXT

sMERGE IN SHIFT BIT

y3TORE THIS CHARACTER

iBUMP TO NEXT SLOT
3y STORE

;END OF INPUT BUFFER

RESET CARRY

;TEST FOR END

GO IF NOT END
sSTART OF I BUFFER
;BACK TO BEGINNING
;ZERO HL

yRESET TIMER
{RESTORE REGISTERS

; RETURN

UP TABLE HERE FOR LOWER CASE

0
'ABCDEFG*

THIJKLMNO?
*PQRSTUVW®

*XYZ:*

SO OO OO

01234567"

1897

(=N~ Y]

;ROW 0 - €

;ROW 1
{ROW 2

;ROW 3

iROW 4
1ROW 5

s COLOR
s "ERROR™

:ROW 6 - ENTER
;CLEAR

s BREAK

sUP ARROW

311



84EF 00 07570 DEFR 0 ;DOWN ARROW

B84FO 00 07580 DEFB 0 sLFT ARROW

84F1 00 07590 DEFB 0 ;RT ARROW

84F2 20 07600 DEFM e
07610 ;
07620 ;#@asassessINPUT CHARACTER AND WAIT SUBROUTINE®tesssessas
07630 ;®  INPUTS SINGLE CHARACTER FROM KEYBOARD BY WAITING @
07640 ;%  UNTIL CHARACTER PRESENT. s
07650 ;®  ENTRY: NO PARAMETERS 2
07660 ;®  EXIT: (A)=CHARACTER e
07670 ;%  ALL REGISTERS SAVED EXCEPT A &
07680 ;

84F3 ES 07690 INPUTW PUSH HL ;SAVE REGISTERS

84F4 216500 07700 LD HL,DBDELP tMINIMUM DELAY+1

84F7 CDCOBS 07710 CALL DELAY $AVOID PREVIOUS CHAR

84FA 216500 07720 LD HL,DBDELP iMINIMUM DELAY + 1

84FD 22EDB5 07730 LD {TSLC),HL ;INITIALIZE

8500 21F592 07740 LD HL, IBUF ;START OF INPUT BUFFER

8503 22F285 07750 LD (IBUFN),HL ;RESET NEXT CHAR SLOT PNTR

8506 22F085 07760 LD (IBUFL),HL ;RESET LAST CHARACTER SLOT

8509 CD2984 07770 INWO10 CALL INPUT i SCAN

850C ¢5 07780 PUSH BC

850D CD1585 07790 CALL GETCHR ;GET POSSIBLE CHARACTER

8510 C1 07800 POP BC

8511 28F6 07810 JR Z, INWO10 ;GO IF NOTHING

8513 E1 07820 POP HL ;RESTORE REGISTERS

8514 c9 07830 RET ; RETURN
07840 ;
07850 ;li'ﬂ.llﬁl!il.llGET CHARACTER SUERQUTINEG!"II’IQ.!G!‘I"
07860 :®* GETS CHARACTER FROM INPUT BUFFER IF THERE IS ONE  ®
07870 ;®  ENTRY: NO PARAMETERS 2
07880 ;®  EXIT: (A)=ASCII CHARACTER OR ZEROCES IF NONE &
07890 ;@ 2 IF NONE, NZ IF CHARACTER g
07900 ;*® (B)=80H IF SHIFT, 0 IF NO SHIFT &
07910 ;%  ALL REGISTERS SAVED EXCEPT 4,BC #
07920 ;

8515 ES 07930 GETCHR PUSH HL $SAVE REGISTERS

8516 2AF085 07940 LD HL,{IBUFL) ;LAST CHARACTER

8519 ED4BF285 07950 LD BC, ( IBUFN) ;NEXT SLOT

851D BT 07960 oR A ;RESET CARRY

851E ED#2 07970 SBC HL,BC ;TEST FOR END

8520 281E 67980 JR Z,GET070 ;G0 IF CAUGHT UP

8522 09 07990 ADD HL,BC ;RESTORE IBUFL

8523 7E 08000 LD A, (HL) {GET NEXT CHARACTER

8524 E680 08010 AND 80H ;MASK IN SHIFT

8526 47 08020 LD B, A ;B NOW HAS SHIFT BIT

8527 7E 08030 LD A {HL) $NEXT CHARACTER

8528 E67TF oBoso AND TFH iA NOW HAS CHARACTER

8524 C5 08050 PUSH BC ;SAVE SHIFT

8528 Fs5 08060 PUSH AF iSAVE CHARACTER

852¢ 23 08070 INC HL ;BUMP LAST PNTR

852D 22F085 08080 LD (IBUFL),HL s SAVE

8530 01F593 08090 LD BC, IBUFE ;END OF I BUF

8533 BT 08100 OR A ;RESET CARRY

8534 EDu2 oB110 SBC HL,BC ;TEST FOR END

8536 2006 08120 JR NZ,GET065 ;60 IF NOT END

8538 21F592 08130 LD HL, IBUF sSTART OF I BUF

853B 22F085 08140 LD {IBUFL),HL ;BACK TO BEGINNING

853E F1 08150 GETO65 rop AF ;RESTORE CHARACTER

853F C1 08160 POP BC ;RESTORE SHIFT

8540 Et 08176 GETOT0 POP HL ;RESTORE ENTRY REGISTER

8541 ¢9 08180 RET s RETURN
08190 :
08200 ;"pRCEENRERGREBEBERANDOM NUMBER ROUTINEOSGRGasssasaseeong
08210 ;®* GENERATES A PSEUDO-RANDOM # FROM 0 TO 127. 2
08220 ;®  ENTRY: NO PARAMETERS 2
08230 ;®  EXIT: (BC)=RANDOM # 0-127 2
08240 ;®  ALL REGISTERS SAVED EXCEPT BC. %
08250 ;

854z Fs 08260 RAND PUSH AF iSAVE REGISTERS

8543 DS 08270 PUSH DE

8544 ES5 08280 PUSH HL

8545 ED5BE185 08290 LD DE, ( SEED} ;GET SEED

8549 2AE385 08300 LD HL,{SEED+2)

854C 0607 08310 LD B,7 ;COUNT FOR MULTIPLY BY 128

8S4E CD6B85 08320 RDMO10 CALL SHIFT ;SHIFT ONE BIT LEFT

8551 10FB 08330 DJINZ RDMO10 ;SEED®128

312



8553 0603 08340 LD B,3 i FOR SUBTRACT

8555 CD7185 08350 RDM0O20 CALL SUB ;SUBTRACT ONE

8558 10FB 08360 DINZ RDM0O20 :SEED®*128-3#SEED=SEED®125

8554 ED53E185 08370 LD (SEED),DE ;STORE NEW SEED

855E 22E385 08380 LD (SEED+2), HL

8561 3ETF 08390 LD A,TFH s MASK

8563 A2 08400 AND D SGET 0-127

8564 4F 08410 LD C,A (NOW IR C

8565 0600 08L20 LD B, 0 ;NOW IN BC

8567 E1 08430 POP HL ;RESTORE REGISTERS

8568 D1 08440 POP DE

8569 F1 08450 POP AF

8564 C9 08460 RET iSHIFT HL
08470 ;
081;80 ;ll!lllllll'lll!llll!sHIFT SUBROQUTINERAER I BEEINIARABONETAR
08490 ;®*  SHIFTS CONTENTS OF {(DE,HL} ONE BIT LEFT *
08500 :®*  ENTRY: NUMBER TO BE SHIFTED IN (DE,HL) *
08510 ;% EXIT: (DE,HL) SHIFTED LEFT ONE BIT, LOGICAL '
08520 ;®  ALL REGISTERS SAVED EXCEPT DE,HL. *
08530 3

8568 29 08540 SHIFT  ADD HL, HL iSHIFT HL

856C EB 08550 EX DE, HL ;GET MS BYTE

856D ED64A 08560 ADC HL,HL ;SHIFT MS 2 BYTES AMD CARRY

856F EB 08570 EX DE,HL ;NOW ORIGINAL#®2

8570 €9 08580 RET sRETURN
08590 ;
08600 ;IlllllllllllllllsuBTﬂAcT SEED SUBROUTINERERASEREREERARRS
08610 ;®*  SUBTRACTS FOUR BYTES OF SEED FROM (DE,HL). 2
08620 ;®*  ENTRY: (SEED ~ SEED+3)=SEED ¢ b
08630 ;% (DE,HL)=FOUR~BYTE VALUE .
08640 ;%  EXIT: (DE,HL)=RESULT OF SUBTRACT N
08650 ;®  ALL REGISTERS SAVED EXCEPT DE,HL *
08660 ;

8571 €5 08670 SUB PUSH BC :SAVE REGISTERS

8572 EDNBE3BS 08680 LD BC,(SEED+2) iGET LS BYTE

8576 BT 08690 OR A sRESET CARRY

8577 EDs2 08700 SBC HL,BC ;SUBTRACT LS 2 BYTES

8579 EB 08710 EX DE, HL $GET M5 2 BYTES

857A EDWBE185 08720 LD BC, ( SEED) ;GET M5 2 BYTES

857E EDA2 08730 SBC HL,BC ;SUBTRACT MS 2 BYTES AND CY

8580 EB 08740 EX DE,HL ;NOW ORIGINAL-SEED

8581 C1 08750 porP BC +RESTORE REGISTERS

8582 C9 08760 RET ; RETURN
08770 ;
08780 ;5#n0%uaNnusseSS88FTLL CHARACTER SUBROUTINE®#®=Zssscsaessss
08790 ;*  FILLS DESIGNATED AREA WITH GIVEN CHARACTER '
08800 ;®  ENTRY: {A)=zCHARACTER b
08810 ;# (DEY=AREA 2
68820 ;% (BC)Y=NUMBER OF BYTES, 1-65525; 0 IS 65536 #
08830 :*  ALL REGISTERS SAVED EXCEPT BC,DE s
08840 ;

8583 12 08850 FILLCH LD (DE), A ;FILL CHARACTER

8584 13 08860 INC DE ;BUMP POINTER

8585 OB 08870 DEC BC ; DECREMENT COUNT

8586 F5 08880 PUSH AF {SAVE FILL CHAR

8587 78 08890 LD A,B ; TEST FOR ZERO

8588 B1 08900 OR c

8589 2803 08910 JR Z,FILO10 ;GO IF DONE

8588 F1 08920 FOP AF sRESTORE FILL CHAR

858C 18F5 08930 JR FILLCH sCONTINUE

858E F1 08940 FILO1G POP AF $RESTORE &

858F C9 08950 RET ; RETURN

08960 -;
08970 ;##REIHSEDECIMAL TO BINARY CONVERSION SUBROUTINEX®a#aszss

08980 :* CONVERTS UP TO SIX ASCII CHARACTERS REPRESENTING i
08990 ;* DECIMAL NUMBER TO BINARY. MAXIMUM VALUE IS 65535. *#
09000 ;*® ENTRY: (HL)=BUFFER CONTAINING ASCII s
09010 ;* {B)=NUMBER OF CHARACTERS b
09020 ;* EXIT: (HL)=BINARY # 0-65535 *
09030 ;% NZ IF INVALID ASCII CHARACTER OTHERWISE 2 i
09040 ;*® ALL REGISTERS SAVED EXCEPT A,HL #
09050

8590 C5 09060 DECBIN PUSH BC iSAVE REGISTERS

8591 D5 09070 PUSH DE

8592 DDES 09080 PUSH Ix

8594 DD210000 09080 LD 1X,0 ;SET RESULT

8598 DD29 09100 DECO4O ADD IX.IX i INTERMEDIATE®2

8594 DDE5 09110 PUSH IX

859C DD29 09120 ADD IX,IX L

313



859E
8540
8541
8543
8544
8546
8549
8548
85 AE
BEAF
8581
85B3
85B4
8586
85B7
8588
85BA
85B8
858D
85BE
85BF

85C0
85C1
85¢C2
85C3
85C6
85CT
85C9
85CB
ascc
85CF
85D0
8503
85D4
85D5
85D8
85D9
85DA
85DB

85DC
85DE
85DF
85E0
85E1
85E3
85E5
85ET
85E9
85EB
85ED
85EF
85F0
85F2

85F4

8634

314

0000

00
G0
00

baok
2E16
9001
BOOY
003¢C
003¢C
0000

20

F592
F592

20
20
20
20
20
52
20
20
20
43

20
45

20
20
20
20
47
20

20
41

43
52

20
20
20
20
24
20

20
52

48
20

ADD 1X,IX
POP DE
ADD IX,DE
LD A, (HL)
SUB 308
Jp M, DECOTO
cp 10
Jp P, DECOTO
LD E, A
LD D,0
ADD IX,DE
INe HL
DJINZ DECO40
DECO70 LD A,B
OR A
PUSH Ix
POP HL
POP IX
POP DE
POP BC
RET
H
;% DELAYS 1
:®  ENTRY:
Had 0=65536
;% ALL REGISTERS SAVED.
i
DELAY  PUSH BC
PUSH DE
PUSH HL
LD DE,-1
DEC HL
DEL010 LD B, 130
DEL020 DJNZ DEL020
PUSH HL
LD HL, ( TSLC)
INC HL
LD (TSLC),HL
POP HL
ADD HL,DE
Jp C,DELO10
POP HL
POP DE
POP BC
RET

%8

HLH

;%10

sGET CHARACTER
1 CONVERT

;GO IF LT "o"
;TEST FOR GT "g"
iGO IF GT n"g"
iNOW IN E

iNOW IN DE

i MERGE

$GO IF MORE
;COUNT TO A
:SET OR RESET Z FLAG
sRESULT TO HL

sRESTORE REGISTERS

;RETURN

. BEROBESNARUBRENRARDELAY SUBROUTINESS0 R0 00SERROUREERT
TO 65536 MILLISECONDS. &
(HL)=DELAY COUNT IN MILLISECONDS

1
]
@
}SAVE REGISTERS

=1 FOR DECREMENT

$+ADJUST FOR "JP NC©
; INNER LOOP TIMING

;LOOP FOR 1 MILLISEC

$SAVE COUNT
3GET TIMER COUNT
s BUMP
$SAVE
;RESTORE QUTER LOOP CNT
;DECREMENT OUTER LOOP CNT
;CONTINUE

1RESTORE REGISTERS

{RETURN

;l!ﬂ!l!llﬂllliliﬂﬂllwoRKING STORAGERACHanEaREERRsRuRBERED

H

TMP1
PRINTF

LPFTF
CHARCT

SEED

DOTO
DASHO

CURCUR
LSTCUR

TSLC

LASTR
IBUFL
IBUFN

DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFB
DEFW
DEFW

o o0

1234
5678
400
1200
3C00H
3C00H
0

[

IBUF
IBUF

; TEMPORARY STORAGE

;PRINTER FLAG:0=O0FF, 1=0N

sLP 15T TIME FLAG:0=1ST TIME
{LP CHARACTER COUNTER
sDEFAULT SEED

:DOT ON TIME {3 WPM DEFAULT)
:DASH ON TIME (3 WPM DEFLT)
;CURRENT CURSOR POSITION
{LAST CURSOR POSITION

:TIME IN M5 SINCE LAST CHAR
;LAST RANDOM CHARACTER SENT
;POINTER TO LAST IBUF SLOT
;POINTER TO NEXT IBUF SLOT

;Il&lll!!lﬂllnﬁlnlillsysTEM MESSAGES#Etonuscsnosaanaanase

MSG1

20
20
20
24
20
20
20
20

45
41
48

20
20
20
4p
20
20
20
20

4E
43
49

20
20
20
4F
20
20
20

4q
54
46

DEFM

DEFM

BREMORGEER

"CHAR=SEND CHARACTER SHIFT 0-9=SEND MSG N*



865D

8685

86 AE
86BY
86B5

86BE
86BF

86CA
86CB

86FY
86F5

871F
8720

873E
873F

8769
8764

8734

8795

8749
8744

87¢C8
87C9

49

49
54

54
4p
54
44
30

46
53
45
20
20

56
45
54
4F

4E
52
4F
53
20

41
45
4F
53
20

20
20
20

56
53

20

54
41

30
20

48
45

54
4E

20
3D

48
3D

20

4E

5E

20
iF
45
20
20

49
41
2E
4D
23

41
45
20
20

Ly
41
by

54

LE
53
4y
53
54

4D
42
23

41
53
30

45
47

09920
09930

4c
44
42
36

49
2E
45
30

09940
09950

43
45
20
4F

4D
54
2E

20

09960
09970

4D
41
2E
43
20

09980
09990

45
59

53
20

10000
10010

i4c
41

55
2D

49
s7
53
39

10020
10030

52
45

20
2E

3D
47

54
20

3D
4p

49
46
45
54
49

M8G2

53

45

MSG3

52

45

MSGH

45
20
50
4F
34

MSGS

20
20
YE
53
2D

4D
4p
54
41
39

MSG6

44
20
20

20
4D
33

MSGT

20
45
20
4c
53

43
52
50
ks
54

MSG8

49
47
20
4c
53

54
45
50
45
54

MSG9

53
54

51
48

HSG10

44
45
54

20
20
20

MSG11

4D
20

45
54

45
4E

DEFM
52
41
48
45

DEFM

DEFM

DEFB
DEFM
54

DEFB
DEFHY
53

DEFB
DEFM
ny
45
45
20
20

DEFB
DEFM

§F
45
7
34

DEFB
DEFM

55
20

DEFB
DEFM

20
52
41
4F

DEFB
DEFM
20
20
52
41
4F

DEFB
DEFM
a7
41

DEFB
DEFM
4D
23
42

DEFB
DEFM
53
45

' SHIFT R=SEND RANDOM SHIFT D=DEFINE MS®

G SHIFT S=DEFINE SPEED SHIFT P,NzPRINT'

* OR NO!

0
*PRINT SET®

0
'PRINT RESET®

0
*SET SPEED MODE. ENTER SPEED 3 TO 60 WPM: !

0
'DEFINE MESSAGE MODE. ENTER MESSAGE # 0-9: !

0
*INVALID SPEED. MUST BE 3 TO 60°

]
*RANDOM CHARACTER MODE. PRESS CLEAR TO STOP'

0
*TRANSMIT MESSAGE MODE. PRESS CLEAR TO STOP'

0
*NO MESSAGE BY THAT #°

0
*INVALID MESSAGE #. MUST BE 0-9'

0
'ENTER MESSAGE. TERMINATE BY ENTER'

315



B87EA
87EB

8811

8812

883E

8864

887¢C

8812
gozc

8892
8894
8896
8898
8894
88gcC
889E
8840
88A2
884l
8846
8848
88Aa
88AC
88AE
8880
88B2
88BY4
88B6
88B8
88BA
88BC
88BE
88co

52
42

00
4D
4F
20
52
20

0o

41
42
5A
52
SA
37
20
30
31
39

48
50

20
20
20
20
41
452

53

4D
59

52
32
41
32
50

43
4B
53

38
3D

32
2E
41
49
51
59

20
20
43

54

3400
0103
1103
c100
0C00
1003
€500
0003
3000
5403
D100
0403
3500
3100
D500
1403
4503
choo
€000
0D00
D000
4003
DLOO
4103

316

49
20

45
35
43
35
54

44
4c
54
31
39
3B

33
2C
42
5a
52
54

20
20

44
Bc
55

45 46
4D 4E
55 56
32 33
2E 2¢C

10150
34 35
3F 2F
43 44

4B 4C°

53 54

10160
20 20
20 20

10170
45 46
Ep YE
56 59
10180
10190
10200
10210
10220
16230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
104500
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
1051¢
10520
10530
10540
10550
10560

54 45 20
54 45 52

DEFB 0
MSG12  DEFM 'MORE THAN 256 CHARKCTERS. 256 ACCEPTED'
48 41 4E
43 48 41
52 53 2E
41 43 43

DEFB 0
;Ilill!llllili!illiCTAB CHARACTER TABLEIGI!Q!G!..IIIQIIII
;¢ TABLE OF CHARACTERS TO BE SENT IN RANDOM MODE. J
;#  DISTRIBUTION DOES NOT CORRESPOND TO THAT IN NOR-  *®
{®  MAL TEXT. SPACE CHARACTER NOMINALLY EVERY 5TH [
:®  CHARACTER. ]
CTAB DEFM * ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,7/~ =31
47 48 49
4F 50 51
57 58 59
3 35 36
3F 2F 2D

DEFM 10123456789.,7/- =;ABCDEFGHIJKLMNOPQRSTUVWXYZ®
36 37 38
2D 20 3D
45 46 47
4D LE 4F
55 56 57

DEFM ' '
20 20 20
20 20 20

DEFM * ABCDEFGHIJKLMNOPRSTUVY!
47 48 49
4F 50 52
;
:EIGQ"!HHQ'EI‘.GI!ICDTAB CODE TABLE'H‘E'!I&IIﬁﬂﬂiﬂiiﬁlli
;%  TABLE OF VALID ASCII CHARACTERS TO BE TRANSMITTED. ®
i®  INDEX TO CHARACTER USED TO OBTAIN TIMING CODES L]
;¢ FROM TTAB. ®
CDTAB  EQU CTAB :SAME DATA
CDTABS EQU 44 ;SIZE OF DATA
H
;Gﬂnﬂll.!lliﬂﬂiﬁ!lﬂlTTAB TIMING TABLE'II'!!“'IQQ.!lﬂllﬁll
;% TABLE OF TIMING CODES FOR CHARACTERS IN CDTAB. ]
;#  POSITION IN THIS TABLE CORRESPONDS TO POSITION IN *#
;%  CDTAB. EACH ENTRY IS 2 BYTES LONG. @
;ﬂIiﬁi!lﬂil.lﬂll!lﬂI'ﬁﬂll}#l!ﬂl.lIlll!ili!ﬂ‘iﬁliﬂllill!l&ﬂ.
TTAB DEFW 34H A

DEFW 3018 B

DEFW 3114 iC

DEFW 0C1H ;D

DEFW oCH iE

DEFH 310H iF

DEFW 0CSH o

DEFW 300H H

DEFW 30H I

DEFW 354 H i

DEFW 0D1H K

DEFW 304H L

DEFW 35H M

DEFW 318 N

DEFW 0D5H 10

DEFW J14H P

DEFW 345H iQ

DEFH acuy iR

DEFW 0COH :S

DEFW 0DH T

DEFW 0DOH iU

DEFW 34 0H v

DEFW 0D4H W

DEFW 3514 X



ggcz
88Cy
88¢C6
88c8
88ca
88ce
88CE
88p0
88D2
88p4
88p6
8808
88DA
88DC
88DE
88E0
88E2
88EY
88E6
88E8

88EA
92F5

932FS
93F5
9459
8000

5103
0503
550D
540D
500D
400D
000D
000C
g10C
0s50¢C
150C
550C
5434
0535
5030
410C
0134
AAOQ3
340¢C
0000

10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770 ;
10780 ;
10790 ;
10800 ;
10810 ;
10820 MBUF
10830 ENDM
10840

*
*+
*

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

3518
305H
0D55H
0DS4H
0D50H
0D40H
0DOOH
0C00H
0coty
0COo5H
0C15H
0C55H
34444
3505H
3050H
0CU1H
3401H
3AAH
QC44R
Q

H

i=(eeeea=)

$BLANK

s2{e=ums)

SERROR(........)

ARBITRARILY SET AT 2560 BYTES (256 BYTES PER MSG
PLUS MSG# PLUS 1 TERMINATOR).

EQU
EQU

$

$+2571

SEOBFANDUEENSEDEDRIRMESSAGE BUFFERUUSIORSBIGIRRRIRIEDOND

*
=

H
10850 ;#S48L8EGRUSSARANROERSINPUT BUFFERSSSARSADSINRERIEIRINENSR
CIRCULAR INPUT BUFFER OF 256 BYTES

H
10860 ;#
10870 ;

10880 IBUF

EQU

10890 IBUFE EQU

10900 TOPS
10910

00000 TOTAL ERRORS

BTAB

80Ch

CLRCOM 83FB

DASH

8335

DECO70 85B6
DEF035 814D
DEL020 85C9

DoTO

ENTER
FNDSR

85E5
0002
82Dp7

GETCHR 8515
INPO1O 8441
INPO52 8478
INPO6O B84BT
INSO10 8414

LINED

3cC40

LINE15 3FCO
LPRINT 8381

MLDEL 0004
MOR0O25 8083
MSG11 87C9
MSGS 86F5

NOPRNT 82B1
PRINTF 85DE
RDMO10 B854E

SHIFT 856B
SPEQ15 81C3
SUB 8571
XMIT 8237

CDTAB
COFF
DASHO
DECBIN
DEF040
DELAY
DSPOGS
FIL0O10
FTAB
IBUF
INPO20
INPOSS
INPO6S
INS030
LINE11
LPFTF
LPS0O10
MORO15
MORO27
M5G12
MSG6
OFF010
RANO1O
RDM0O20
SNDO10
SPEQ20
TMP1
XMT010

EQU
END

8812
8356
85E7
8590
8152
85C0
8370
858E
80BE
92F5
suuc
847E
84 B9
8426
3ECO
85DF
8380
8037
8096
87EB
8720
835E
8212
8555
82FE
81DF
85DC
825E

ENDM
IBUF+256
IBUFE+100
START
CDTABS 002C
CON 833D
DBDEL 0064
DEF005 80F1
DEF050 817F
DIS010 83D3
DSPO10 837D
FILLCH 8583
FTABS 000F
IBUFE 93F5
INPO25 B4LE
INPOS6 8497
INPUT 8429
INW010 8509
LINE12 3F00
LPRO1O 8398
LPSTAT 83AF
MOR020 8064
MOR030 80AB
MsG2 86B5
MSG7 873F
ONO10 8343
RANO20 8226
SCREEN 3C00
SNDCHR 82E0
SPEED 8191
TOPS 9459
XMTO20 8273

;s TOP OF STACK

CHARCT
CTAB
DBDELP
DEF025
DEFINE
DISCHR
DSPMES
FNDO20
GET065
IBUFL
INPO3S
INPOS5T
INPUTS
KBTAB
LINET3
LPRO20
LSTCUR
MORO21
MS5G1
MSG3
MSG8
PRIO1O
RAND
SCROLL
SPACE
SPEEDF
TSLC

Figure 13-8. MORG Listing

85E0
8812
0065
8126
80EB
83BE
836D
82D4
853E
85F0
8456
8494
840D
84 BB
3Fu40
83A4
85EB
8066
85F4
86BF
8764
829¢C
8542
83D6
832D
03¢0
85ED

CLEAR
CURCUR
DECOUO
DEFO030
DELO10
bot
ENDM
FNDMSG
GETOT0
IBUFN
INPO4O
INPOSS
INPUTW
LASTR
LINE1Y
LPROYO
MBUF-
MORQ22
MSG10
MSGH
M5G9
PRINT
RANDOM
SEED
SPEQOS
START
TTAB

0001
85E9
8598
812F
85C7
8327
92F5
82¢7
8540
85F2
8458
84B1
84F3
85EF
3F80
83AC
88EA
807D
8744
86CB
8795
828B
81F0
85E1
8197
8000
8892

317



The variables are followed by system messages and each
message is terminated by a zero.

The CTAB table (Character Table) is a table of 128 ASCII
characters distributed among all permissible characters.
This table is used in the Random mode to generate a
random character. A pseudo-random number of 0 through
127 is used as an index to pick up the corresponding
character from the table.

The CDTAB (CoDe Table) is a table of 44 characters that
represent all valid characters generated by the system.
Since these are contained in the first 44 characters of
CTAB, CDTAB is equated to CTAB.

TTAB (Timing Table) is a table of 44 entries associated
with CDTAB. Each entry is two bytes {one word) long and
represents the coded eight-field representation of the
Morse code character. CDTAB and TTAB are used to convert
a valid character to its dot and dash equivalent.

The next object is MBUF (Memory Buffer), a 2571-byte
table that holds all defined messages. Since each message
can consist of 256 characters plus a one-byte header of the
‘message number, MBUF is 257%10 bytes long plus one byte.
The last byte ensures that there’ll always be a -1
terminator for a full buffer.

IBUF (Input Buffer) is a circular buffer that holds the
current characters read from the keyboard. You can use it
to implement the buffered input while characters are
being generated to the cassette output. TOPS is the “top of
stack,” 101 bytes up from the end of the IBUF area.

The memory map for MORG is shown in Figure 13-9.

Program Description

We'll use a “bottom-up” approach to describe the program
modules. We’ll start at the lowest-level modules and work
our way up to a description of how the upper two levels
utilize the other modules to implement the Morse code
program functions.

318



8000H \
DRIVER

LEVEL 2 ROUTINES

LEVEL 3 ROUTINES > 1500 BYTES

LEVEL 4 ROUTINES

LEVEL 5 ROUTINES

~ 24 BYTES

WORKING STORAGE
SYSTEM MESSAGES

~ 550 BYTES

ey Sttt s

CDTAB/CTAB 28 vres
TTAB 44 BYTES
MBUF \ 257t BYTES
/
IBUF 256 BYTES
HIGH MEMORY STACK } v

Figure 13-9. MORG Memory Map

Delay Subroutine (DELAY)

The DELAY subroutine delays from 1 to 65536
milliseconds, depending upon the input count in the HL
register pair. In addition to the delay, it increments the
software “elapsed time” variable, TSLC, by the timing
count. TSLC holds the rough elapsed time in milliseconds
and is used only for timing the debounce delay.

319



DELAY works by decrementing the delay count in HL by -1
in DE. Note that the decrement is done by an ADD HL,DE,
which produces a carry if the contents of HL are positive or
Zero.

Decimal-to-Binary Conversion Subroutine (DECBIN)

This subroutine takes a string of ASCII characters repre-
senting decimal digits and converts it into a binary
number of 0 through 65535. Entry is made with HL
pointing to the buffer containing the leftmost character of
the string and B containing the number of characters in
the string.

The result is in HL on exit. If an invalid character is found,
DECBIN stops conversion and returns with the Z flag reset
(NZ). An invalid character is defined as one that’s not
30H(0) through 39H(9).

DECBIN performs the conversion by taking an ASCII char-
acter, subtracting 30H to change it into binary 0 through 9,
testing the result for validity, and adding the 0 through 9
to a partial result in IX.

The loop at DEC040 is entered once for each character of the
string. Each time the loop is entered, the partial result is
multiplied by 10 with a shift-and-add technique.

Fill Character Subroutine (FILLCH)

The Fill Character subroutine fills a specified area with a
given fill character. It operates with a simple loop that
tests for a decrement of BC down to zero.

Subtract Seed Subroutine (SUB)

The Subtract Seed subroutine is a four-byte multiple-
precision subtract that subtracts the contents of DEHL,
(treated as a four-byte integer value) from the “SEED”
variable, a four-byte value in SEED through SEED+3. The
result goes back to SEED. Two subtracts are done, the
second using a possible carry from the lower-order
subtract.

320



Shift Subroutine (SHIFT)

The SHIFT subroutine shifts the contents of DE,HL, treated
as a four-byte integer, one bit position left in logical
fashion. SHIFT is used to multiply by two and is called by
the RAND routine.

Random Number Subroutine (RAND)

RAND is a subroutine to generate a pseudo-random
number. The algorithm for the routine is this: Starting
with a “seed” value, a new pseudo-random number is
generated by multiplying by an odd power of 5, modulus
64K. “Modulus” simply means that the result is divided by
64K, the quotient is discarded, and the remainder is saved.
This process is done automatically as the result is held in
a four-byte integer variable in SEED through SEED+3; the
maximum value here is 65535.

The odd power of five chosen here is 125 (5 to the third
power). The old “seed” is put into DE.HL from SEED. The
SHIFT subroutine is then called 7 times to multiply the
value by 128. The original value in SEED is then
subtracted three times from DEHL by calling the SUB
subroutine three times. The result is the old seed=125.
This value is put back into variable SEED for the next
generation.

Hints and Kinks 13-5
Random Number Notes

The algorithm used here is
R{(N+1) = 125%R(N) mod 2%

The mod 2% operation is automatically per—
formed by working in 32 bits.

You can generate about 2® or 1 billion numbers
without repeats in this approach. I haven't
verified this, having quit after scanning only
about 1 million cases.

321



A 7-bit mask of the high-order byte of the new random
number is performed to get a value of 0 through 127. This
is returned in BC. Of course, B will always be 0 on return,
but it’s convenient to have the number in a register pair
for further processing.

Get Character Subroutine (GETCHR)

The Get Character subroutine gets the next character, if
any, from the circular input buffer IBUF. During normal
operation IBUF is being filled with characters as they are
read in from the keyboard. The characters keep filling up
IBUF as fast as they’re input. Also during normal
operation, characters are being output from IBUF to the
Morse Code Send Character (SNDCHR) routine, and for
display on the screen.

We use this routine to handle the task of seeing if another
character is ready for output and display. The routine uses
two pointers, IBUFL and IBUFN. IBUFL holds the address of
the next character to be output. IBUFN holds the address of
the next “slot” in IBUF. If these two pointers are equal, the
GETCHR subroutine has caught up with the character
storage.

If the pointers are not equal, GETCHR uses IBUFL to get the
next character. It then bumps IBUFL by one to point to a
possible next character. A limit condition occurs when
IBUFL points to the last character position of IBUF+1. If
this is true IBUFL is reset to the start of IBUF.

On exit, A contains the ASCII character found in IBUF or
zeroes if there was no character available. The Z flag is
either set if there was no character or reset if there was a
character.

Input Character and Wait (INPUTW)

The Input Character and Wait subroutine is called to pick
up a single character for user input. It is not used during
normal operation, only for response to system queries such
as code speed and message number. In these cases, no
buffering need be used.

322



INPUTW calls INPUT to input the next character. INPUT is
the fast input routine used for all character input. Before
calling INPUT, INPUTW “dummies up” the “Time Since Last
Character” variable TSCL to make it look like the debounce
time has elapsed. It does this each time a new character is
required. This approach makes it possible to use INPUT for
both “wait until next character” and “scan fast and
return” functions. INPUTW does not exit until a character
has been input to the keyboard.

Keyboard Input Subroutine (INPUT)

This subroutine is the high-speed keyboard input
subroutine that permits buffering of input characters
during transmission of code characters. INPUT has three
basic functions: fast scan, conversion, and storage.

When INPUT is called it loads the A register with
input/output address 387FH. This address enables all “row”
addresses of the keyboard. If you are pressing any key,
there will be a one bit in A after this LD. In effect, this is
an OR of all rows into eight column bits. If you aren’t
pressing any key, INPUT immediately returns. This
sequence takes six instructions.

If there is a one bit in A after the fast scan, INPUT checks
the elapsed time by testing variable TSLC. If the debounce
time has not elapsed (DBDEL), INPUT returns since the key
press may represent the same key input on the last read.

If the debounce time has elapsed, INPUT goes into the
conversion processing. It now scans each row by reading in
I/O address 3801H, 02H, . ... If a one bit is found after any
read, the conversion routine at INP020 is entered. At this
point HL contains the row address. The column bit is
converted to a number from 0 through 7 and added to 8
times the row value to get an index of 0 through 56.

The index value is added to the address of the start of
KBTAB. KBTAB is a table of 56 characters representing the
keyboard configuration. KBTAB represents the “unshifted
characters” from the keyboard. The character represented

323



by the keypress is read from KBTAB and put into A. If this
character is a zero, it is an “ignore” character and a return
is made.

The SHIFT key is now read and stored in B. (NOTE: On
Model II1, this is the LEFT SHIFT key.) If the character read
is either slash (/) or minus (-), the SHIFT key is tested; if
SHIFT is being pressed, the slash or minus is converted to a
question mark (?) or equals (=) by setting bit 4 of the
character.

A test is then made for the CLEAR character. The CLEAR
key can be pressed to reset operation of the program. If
CLEAR is being pressed, the program is restarted at MOR015
after some cleanup of the current cursor position
(CURCUR).

If CLEAR is not being pressed, the code at INP057 is entered.
This code stores the character in IBUF by using IBUFN, the
variable that points to the next IBUF character “slot.”
After the store, IBUFN is incremented by one. A test is
then made to see that IBUFN has not gone beyond the end
of IBUF. If it has (IBUFN=IBUFE), IBUFN is reset to the
beginning of IBUF. Since a character has just been read,
the “time since last character” variable TSLC is reset to
zero, and the subroutine is exited.

Input String Subroutine (INPUTS)

The Input String Subroutine is used to input a user
response to a system question such as that for code speed.
It calls INPUTW, Input Character and Wait. As each .
character is input, it’s displayed on the screen by a CALL to
DISCHR. INPUTS detects the end of the input string by
testing for an ENTER and returns with a character count in
B. The character count will be used in converting the
(decimal) string to binary in DECBIN.

Clear Communications Area (CLRCOM)

The Clear Communications subroutine calls FILLCH to
clear the last three lines on the screen (the
communications area). Blanks are filled.

324



Scroll Subroutine (SCROLL)

SCROLL is used to scroll up the first 12 lines of the screen.
This is the “text” area used to display text as Morse code
characters are entered and transmitted. Lines 1 through
11 are moved up into lines 0 through 10 by an LDIR
instruction. The last line of the text area, line 11, is then
filled with blanks by a call to FILLCH.

Display Character Subroutine (DISCHR)

The Display Character Subroutine stores a character on
the screen at the current cursor position. It is used for all
screen output, both in the communications and text area.
The current cursor position is always held in variable
CURCUR as a screen address. After the character is stored,
CURCUR is incremented by one. If it now points to the last
position of line 11, a CALL to SCROLL is made.

Line Printer Subroutine (LPRINT)

LPRINT is the line printer driver subroutine. If the PRINTF
variable is non-zero, the “P” conimand has been given for
simultaneous line printer output. In this case, the
character is output to the system line printer. On the first
output to the line printer (LPFTF=0) and after 32
characters have been output to the line printer, the
subroutine automatically outputs a carriage return for a
new line. This eliminates overprinting in some system line
printers.

LPRINT uses an “internal” subroutine LPSTAT to read line
printer status.

325



Hints and Kinks 13-6
Line Printer Output

LPSTAT is a typical line printer driver for
parallel line printers. The handshaking
between the computer and line printer is
probably the simplest of any peripheral. A
line printer is ‘‘ready'' when it has finished
printing a character and ready to accept the
next. The inverse of ready is ‘'busy.'' In an
unbuffered line printer, the busy time

duration in seconds is 1/N, where N is the
number of characters per second.

A status loop checks the busy status (LD

A, (37E8H)} until the iine printer is ready to
accept the next character, at which time the
CPU outputs the character (LD (37E8H).A)
causing the line printer to again become busy.
The busy flag is set automatically by the line
printer electronics during printing and reset
after printing.

Buffered line printers can accept characters
during printing as long as the buffer does not
become full.

Display Message at Location N (DSPMES)

DSPMES is called for system messages, such as those
prompting the user to enter code speed. On entry, HL
points to the start of a message string. This string is
assumed to be terminated by a zero (null) character.
DSPMES picks up a character at a time and stores it on the
screen by using the contents of BC as a pointer. HL and BC
are incremented after each store. When a null is detected,
DSPMES returns. Variable CURCUR, Current Cursor, is
adjusted for each store.

Send Character Subroutine (SNDCHR)

This subroutine is the heart of MORG as far as
transmission of audio code characters. It’s called with the
A register containing the ASCII character to be
transmitted.

326



SNDCHR first searches for the character in CDTAB, the
character code table. As SNDCHR can only be called with a
valid character, the search must be successful. When the
character is found in CDTAB, its index of 0 through 43 is
multiplied by 2. The index now can be used to pick up the
corresponding TTAB entry, which contains the coding of
dots, dashes, spaces, and terminator. The character is
picked up from TTAB by adding the index to TTAB and
loading the character into H and L.

The code starting at SND010 and ending at the next return
is the major “output” loop of SNDCHR. The contents of HL
are shifted two bits right. The two bits shifted out are
saved in A and tested. They are either 00 (dot), 01 (dash),
10 (space), or 11 (terminator). If the bits are a terminator,
the subroutine is exited.

If the bits represent a dot, the DOT subroutine is called; if a
dash, DASH is called.

DOT and DASH call two other subroutines at a lower level,
CON and COFF. CON produces an audio tone of 500 hertz by
outputting alternate 01 and 10 to the two least significant
bits of the cassette latch at address 0FFH. DELAY is called
to time out the 1 millisecond delay between an on and off
condition. The output goes on for 1 millisecond, then off for
one millisecond, producing a 500 hertz square wave.

COFF is similar to CON, except that it leaves the cassette
latch off and performs only the delay.

DOT calls CON to produce the tone for one dot time (DOTO)
and then calls COFF for one dot time. DASH calls CON to
produce the tone for one dash-time (DASHO) and then calls
COFF for one dot time.

If the two-bit code was a 10 in the main loop of SNDCHR, an
inter-character space is called for. In this case, only COFF
is called for two dot times, as one dot time has already
been output for the last dot or dash. The total elapsed time
is three dot times.

327



Find Message Subroutine (FNDMSG)

This subroutine is used to search the Memory Buffer MBUF
for a given message number. It’s possible that the message
has not been defined.

A search is made by scanning for a given message number
0 through 9. This byte can only exist if a message has been
stored in MBUF, as other bytes are ASCII characters, minus
ones, or other digits.

If the message number is found, FNDMSG is exited with HL
pointing to the message, otherwise HL points to the next
available area for the message. A CPIR instruction is used
for the search in a small subroutine called FNDSR.

Main Driver

The subroutines above are used by the main body of code
to implement the functions of MORG. The main driver of
MORG starts at START. All “restarts” (as, for example, a
CLEAR) come back to MORO015.

The code from START to MORO15 initializes MBUF with
minus ones, initializes the SEED, clears the screen, and
draws the line separating the text area from the
communications area. The restart code at MORO015
initializes the IBUF pointers and TSLC and outputs the
initial message.

MOR020 is the start of the loop to output characters or
messages. A call is made to INPUT to scan the keyboard
and then to GETCHR to get a possible character. If no
character is available, a “minor” count in D is
incremented. When this count is equal to MLDEL,
approximately one millisecond has been reached, and
variable TSLC is bumped by one. This software counting is
necessary as TSLC is used in the debounce delay in INPUT.
If it were not done, the keyboard routine could be “locked
up” waiting for the debounce delay.

If a character is present, it’s either a character to be
transmitted or a special function that uses the shift key
and 0 through 9, T (Transmit Message), D (Define

328



Message), § (Define Speed), R (Random), P (Print), or N
(No Print). If no shift is present, the character is displayed
(DISCHR), printed (LPRINT), and transmitted (SNDCHR) and
a return is made to MOR020.

If a special SHIFT key has been pressed, a table of
allowable functions, FTAB, is searched for the key. If none
is found, the keypress is ignored. If a match is found, the
index from FTAB is used to pick up an address from
branch table BTAB. The entries in this table match the
entries for the character. A branch is then made to one of
six routines that will implement the function required.
Return will be made back to MOR015 at the completion of
the function.

Function Routines

The Define Message Routine (DEFINE) is entered if SHIFT D
is pressed. It calls CLRCOM to clear the communication
area and then prompts the user to input a message
number. A test is made of the input for a valid number
and an error message is output if the number is not 0
through 9.

FNDMSG is called to check for a current message with that
number. If a current message is found, it’s deleted by
moving up the remainder of MBUF on top of the existing
message. The remainder of MBUF is then filled with minus
one bytes.

The loop at DEF040 is then executed. This loop uses INPUTW
to get a character, store it in MBUF, and display it by
DISCHR. A check is made for messages exceeding 256
characters with an appropriate message output if this is
the case. The main driver loop at MOR015 is reentered
when an ENTER is input, ending the message.

The Set Speed Routine (SPEED) is entered if a SHIFT S is
input. It clears the communication area and displays a
prompt message for user speed input. INPUTS is used to get
a character string, which is then converted to binary by
DECBIN.

329



If the speed value is less than 3 or greater than 60, an
error message is output, and the sequence is repeated.
Otherwise, the speed value is used to divide system value
SPEED (nominally 1200, but adjusted for system overhead)
to obtain the dot time in milliseconds. This value is stored
in DOTO. The dot time is multiplied by three to obtain the
dash time. This value is stored in DASHO. The main driver
is then reentered at MORO15.

The Transmit Random Characters Routine is entered
when a SHIFT R is input. This routine clears the
communications area. It then calls RAND to get a random
number of 0 through 127. This value is then used to get a
character from the 128-byte CTAB. If a blank character is
picked up, a test is made to see if the last character was
blank. If it was, a new character is generated to avoid
sending two blanks in a row.

The character is then displayed (DISCHR), printed (LPRINT),
and transmitted (SNDCHR). A test is then made for a
CLEAR character by calling INPUT even though no input is
taking place for characters. A CLEAR will restart at
MORO15, otherwise RANO010 is executed.

The Transmit Message Routine (XMIT) is entered if a SHIFT
0 through 9 is entered. The communications area is
cleared. At this point, the message number is still in the
BC register pair. It is used to call FNDMSG to find the
location of the message in MBUF. If the message number is
not found, an error message is briefly output and the main
driver is reentered at MORO015.

If the message is found, it is transmitted character by
character until a non-ASCII character is detected (new
message number header or minus one). DISCHR, LPRINT,
and SNDCHR are called to display, print, and send each
character.

The Print (PRINT) and No Print (NOPRNT) Routines are
entered by SHIFT P and SHIFT N, respectively. The only
action in each is to clear the communications area and
display a short PRINT SET or PRINT RESET message.
The main driver is then reentered at MORO015.

330



Using This Program

There are several alternatives in using the program. First
of all, of course, you don’t really have to use it at all except
for reference. It illustrates many of the concepts we
discussed earlier in the book.

If you care to actually run the program, you may key in
the machine code by using Disk DEBUG or T-BUG. The
program is assembled at 8000H and, of course, is
non-relocatable except by reassembly. At first blush, this
seems like a formidable task, as there are several
thousand bytes. However, it can be done in slightly over
an hour for a fast typist. Checkpoint occasionally by
saving what you've done. Also, mind the locations! There
is nothing worse than completing a large input of several
thousand locations and finding out at the end that you've
been one location off for 1500 bytes!

A third alternative is to key in the source. This is a
formidable job, but does allow you to experiment with the
program once you have captured the program on disk or
tape.

331






Chapter Fourteen
Tic-Tac-Toe Learning Program

We're presenting another larger assembly-language
project in this chapter — a program that plays tic-tac-toe.
The difference between this and other programs that play
the game, however, is that this one learns! It starts off
playing all possibilities, but quickly learns which paths
lead to winning games.

The program was assembled using the Disk Editor/Assem-
bler, but can be easily modified to run on EDTASM by the
simple format changes of adding colons after labels and
using single arguments on data generation pseudo-ops.

General Specifications

I can sum up the general specs for the program in a
paragraph or so: Write a program that plays tic-tac-toe
with a human. The program always makes the first move.
The program must start out by playing any possible
sequence and must not use any predetermined logic to
decide where to play, except for the obvious capabilities of
being able to block a human’s winning row, column, or
diagonal and of trying to complete its own winning row,
column, or diagonal.

As the program plays games, it should record the win, loss,
and draw records of the games. More importantly, it
should “learn” which paths produced winning games and
somehow reinforce those paths. It should also learn which
paths caused it to lose and avoid those sequences.

The program should, of course, draw a tic-tac-toe grid, put
in Xs and Os, prompt the human, display the

333



win/loss/draw record, and do all the usual things in
interacting with the user.

Operation

Here again, as with the Morse Code Generator program,
we can define the operation of the program before actually
designing it — we can define the external or outward
operation of the system. Whether or not we can actually
implement such a program is still a question at this point.

The program should draw a tic-tac-toe grid on the screen
as shown in Figure 14-1. The computer’s symbol will be an
X and the human’s an O. Initially, and at each new game,
the title TIC-TAC-TOE will be displayed at the top of the
screen.

Figure 14-1. Tic-Tac-Toe Grid

The computer moves first, placing an X in one of the nine
positions, and then prompts the user with a YOUR MOVE
message. The human then responds by entering a digit of
0 through 8, depending upon the position in which he
wants to place an O. After the O is placed, the computer

334



plays again and prompts the user. This dialogue continues
until either the human or the computer wins.

If the human makes an invalid choice of square (one that
is already occupied by an X or O), the message
TRY AGAIN is displayed, and the human must try a new
move.

At the end of the game, the program displays either
YOU WIN!, I WIN, or DRAK and then displays the
message ONE MORET If the human wants another game,
he can press any key from O through 8 to start a new
game.

At the end of each game, a “history” of the past 128 games
is displayed on the bottom three lines of the screen as
shown in Figure 14-2. There are 2 lines of 64 characters on
the bottom of the screen. As each game is played, a W+ L+
or D is displayed in the next position for win, lose, or draw.
When the 128 positions are filled up, the history “slides” to
the left to display the last game and previous 127 games.

HISTORY LAST 128 GAMES
DDDLWDDWLWD

Figure 14-2. Tic-Tac-Toe
History

335



Messages are displayed in “large format” at the top of the
screen, except for the history message, which is standard
alphanumeric size.

All of the above seems perfectly achievable for an
assembly-language or BASIC program, with the exception
of the internal workings of the “learning” capability. We’ll
discuss this major point next.

General Design

The general design of this program can be divided into
several areas of research:

© Nature of tic-tac-toe
© Alternatives to learning
® Algorithms

Nature of Tic-Tac-Toe

Just to start from “square one,” let’s review the rules of
tic-tac-toe. Tic-tac-toe is played on the grid shown in
Figure 14-1. There are nine squares in the grid. Two
opponents play, one using Xs and one using Os (an old
name for the game is “naughts and crosses”).

Each player plays in turn, putting his X (or O) into a
vacant square. The first player to successfully put all Xs
or Os into a row, column, or diagonal wins the game. If
neither player can complete a row, column, or diagonal,
the game is a draw. A sample game is shown in Figure
14-3.

336

SO



FIRST MOVE
BY X

e
X
pVY

o
O

SECOND THIRD MOVE
MOVE BY X
aye

X| O] X X|{O|x
O )

FOURTH MOVE FIFTH MOVE
BY @ — 8Y X
“BLOCKS™ ROW
OF Xs
SIXTH MOVE SEVENTH
8Y O MOVE
“BLOCKS” X X WINS BY
DIAGONAL COMPLETING

COLUMN

Figure 14-3. Sample Tic-Tac-Toe Game

Let’s start our research by asking, “How many
different games can be played?” At first, this seems
like a question for a statistician, but we can draw some
conclusions about it.

337



Each square can only have an X, O, or space (no play) in
it. Therefore, we can represent any move of any game by
listing all possible configurations of Xs, Os, and spaces.
If we start to do this by hand, we can get confused quite
easily, as shown in Figure 14-4. v

[/

x O

/
)
/

X

INITIAL

of Tic-Tac-Toe

x
y
0[X
!

Figure 14-4. Manual Analysis

SECOND MOVE OF ONE CONFIGURATION

FIRST MOVE

T

338



There are just too many combinations to keep track of!
Let’s try a different approach. We'll assign an X a one
value, an O a two value, and a space a zero value. Now
we can write down any configuration, beginning of
game, middle of game, or end of game by a series of 0,1,
and 2. We'll number the squares 0,1,2,3,4,5,6,7, and 8 as
shown in Figure 14-5.

SQUARE SQUARE SQUARE
e 1 2
SQUARE SQUARE SQUARE
3 4 5
SQUARE SQUARE SQUARE
6 7 8

Figure 14-5. Tic-Tac-Toe
Squares

Sample configurations are shown in Figure 14-6. The begin-
ning of a game has all blanks and is therefore represented by
0-0-0-0-0-0-0-0-0. A typical “middle game” shown in the
figure has a combination of Xs, Os, and blanks and is
represented by 1-2-1-0-2-0-0-0-0. A typical end game shown
in the figure is represented by 2-1-0-2-2-0-1-1-1.

339



BEGINNING OF GAME

SQUARE
O 12 3 45 6 7 8
0-0-0-0-0-0-0-0-0

X0 X TYPICAL MIDDLE GAME
SQUARE
0 12345678
1-2-1-0-2-0-0-0-0
o X TYPICAL END GAME
o0 SQUARE
© 123450678
XXX 2-1-0-2-2-6-1-1-1

Figure 14-6. Tic-Tac-Toe
Configurations

Figuring Permutations

How many different combinations, or more precisely,
permutations are there of Xs, Os, and spaces? We can
find out by listing all permutations of the numbers. We’'ll
start with 000000000, and end with 222222222 We've
eliminated the dashes for compactness.

Wait, a minute, this looks suspiciously like a range of
numbers, not binary, since there are three symbols, but
base three. This is no more mysterious than binary!
There are three symbols, 0, 1, and 2, and we count much
the same way — 0,1,2,10,11,12,20,21,22, . ...

340



Hints and Kinks 14-1
Base 3 Numbers

Base 3 numbers (ternary) use the same
positional notation as binary, decimal, and
hexadecimal. The rightmost digit is 3°, next
is 3, and so forth.

The same conversion techniques used in binary
or hexadecimal can be used to convert between
decimal and base three — double dabble:

L
2021 2x3:6+0<6

0 x3718+2 = 208
2Px3=60+| =61,
and '‘'divide by 3, save remainders'':
g R2
3l 2 ro
36 r2 [ 295

3120 R
3lel,

Just as a nine-digit binary number can hold 2 to the ninth
permutations, a nine-digit base three number can hold 3 to
the ninth permutations, or (let me use my pocket
calculator here) 19,683 permutations.

One of those permutations will represent any
arrangement of Xs, Os, and spaces we care to define. Many
of the permutations are not possible in a game, such as
111111111, 222222222, 222222000, and many others!

As a matter of fact, we can write a fairly simple
assembly-language program to figure out the number of
permutations we’ll have to work with. 19,683

341



permutations are really too many to fit into memory with
everything else. We'd like to see if we can reduce that
number down to something manageable!

Reducing the Number of Permutations

We'll start by making some assumptions about the game
to simplify things. First of all, the computer will always
play first with an X. Secondly, we’ll look for those
permutations in which the computer is to play next, not in
which the human is to play. We’ll never have to deal with
the latter case. This means that the number of Xs and Os
have to be equal.

A flowchart for such a program is shown in Figure 14-7. It
cycles a variable from 000000000 through 222222222 in
base three. For each number, it tests the number of Xs
(ones) and Os (twos). If they are equal, it adds 1 to a count.
At the end, the count has the number of possible
permutations of “computer to play next” {this includes
000000000 where the computer has not yet played, but
#Xs=#0s=0).

38— COUNT
@00 00 000
~—VARIABLE

COUNT=
COUNT +1

/

342



v

VARIABLE =
VARIABLE b — —— ADD ONE IN
+1 BASE 3

- - = - ONE MORE
THAN 222 222 222

=1600 600 000

YES - COUNT HAS # OF
PERMUTATIONS

Figure 14-7. Flowchart Try #1

When we run such a program, we find that there are about
3200 such permutations, a large reduction from all
possible permutations of 19,683.

Still, we would like to reduce the permutations further.
Well, we can delete all permutations where the game has
already been won! We’d never continue from such a point
in an actual game. This would be the case in which there
are three Xs or Os in a row, column, or diagonal. The
flowchart for such a program is shown in Figure 14-8.

START

¥

@~-COUNT
000 209 9g0
—o VARIABLE .

3xXs

OR Os IN ROW

COL, DIAG.
jt4

YES -~ -~ -~ — GAME OVER

COUNT =
COUNT +1

343



=

¥

VARIABLE=
VARIABLE . — — ADDONEIN
+1 BASE 3

= 1020 °,W 80 o ONEMORE THAN
? 222 222 222

7 YES

Figure 14-8. Flowchart Try # 2

When we implement the program, we find that there are
now about 2460 valid permutations, a further reduction.

Another reduction we can make is to eliminate “9th move”
permutations. In this case, 8 squares have been filled and
the computer has only one choice. When this is added to
the analysis program, we have cut down the allowable per-
mutations by another 100 or so.

We can reduce further by eliminating permutations where
there are two Xs in a row, column, or diagonal. This
means the computer will win on the next move and knows
enough to finish the game. This reduces the number of
permutations we have to deal with still further.

Are there any other reductions possible? Yes, a major one.
We know that there are many configurations of tic-tac-toe
moves that are identical except for rotation. Figure 14-9
shows some of these. Also, there are identical games when
“mirror images” are considered. We can cut down on the
permutations we have to deal with drastically by consid-
ering rotations and mirror images.

344



)

N
)
J

X O X
0] 0
X 0 X
NS \?
% N x ) : = 4%6
Figure 14-9. Rotation ldentities

There are eight rotations and mirror images to consider,
and they are shown in Figure 14-10.

X

X]0]X X190 0° ROTATION

Y = 0 (NO ROTATION)

X110l X 0iX

0 —— 0 90° ROTATION

X

X101X

0 = 0 180° ROTATION
XiotX

345



X101 X X

0 = 0 270° ROTATION
X0

X0 X X0l x 9° ROTATION

0 :;‘> 0 MIRROR IMAGE

XlolxX X|0 90° ROTATION

0 S 0 MIRROR IMAGE
X

X10|X 180° ROTATION

0 : 0 MIRROR IMAGE
X|0iX

X10IX X 270° ROTATION

0 — 0 MIRROR IMAGE

ol X

Figure 14-10. Rotations
and Mirror Images

Qur analysis program now eliminates:

1.

2.
3. All permutations in which the game has already

4.

5.

All permutations in which the number of Xs and Os
are not equal.
All permutations for the last move.

been completed.

All permutations in which the computer will win on
the next move.

All permutations which are rotations or mirror
images of other permutations already recorded.

The flowchart for figuring out the number of permutations
we have to deal with is shown in Figure 14-11.

346



START @

v
@ —>COUNT FIND ALL
000 000 000 8 ROTATIONS,
—> VARIABLE MIRROR
IMAGES

YES- SKIP THIS
ROTATION

YES - COMPUTER
MOVE

COUNT =
COUNT +1

=0
VARIABLE =
VARIABLE +
NO ~ GAME NOT !

ALREADY
WON

=1 000 000 000

i NO- COMPUTER WikL
NOT WIN ON

@ @ MOVE

Figure 14-11. Final Flowchart

What do we really have after totaling the number of
permutations in this fashion? We have a complete record
of all configurations that we would encounter in any
tic-tac-toe game in which the computer plays first and
knows enough to complete a row, column, or diagonal; to
recognize that the game has been lost; and to recognize
that it will win on the next move. More importantly, the
number of permutations we have to deal with have been
reduced from 19,683 to 120! Now we can fit the
permutations in memory and possibly implement the
program!

347



Alternatives To Learning

Given a reasonable number of permutations to work with,
how do we implement artificial intelligence in the
program? How do we make it learn?

One approach would be to implement some sort of giant
binary tree structure in the program as shown in Figure
14-12. We'd start off with the “empty” configuration and
construct all possible courses a tic-tac-toe game could take.
Then, if the computer lost, we would delete the last move
so that the computer could never make that play again.
When all possible lower branches were deleted, we’d delete
the upper “limb.” Given enough games, we’d have a
computer that “learned” by never making the same
mistake twice.

~ N
-~ ~
- ~
- N
e AN
& N
X X X
e ~
e N
e ~
y'd N
0lx x|o X
0
// \\
y'd N

ETC.

Figure 14-12. Tic-Tac-Toe
Binary Tree

348



Hints and Kinks 14-2
Learning By Losing

If we implemented the '‘'learning by losing''’
algorithm, we'd have a very mechanical
learning machine, and we'd have to play
hundreds of games to make much progress.

What we really want is not so much an
infallible ‘‘*idiot savant'' as something
that will emulate human learning — learning
by trial and error with reinforcement of
successful actions and rejection of
unsuccessful approaches.

Another way to create a learning process was described in
the pages of Scientific American some years ago, and
attributed to work done by Michie at the University of
Edinburgh. Suppose that we emulate the tree structure
described above by a series of boxes. Each box is marked
with the permutation that we’ve allowed by our analysis
program.

Inside each box, we put different colored balls, each color
representing one of the paths that could be taken. There
could be nine colors for a “first move” configuration, seven
for a “third move,” five for a “fifth move,” and so forth.

We'll put four balls of each color into first move boxes,
three of each color into third move boxes, two of each color
into fifth move boxes, and one of each color into seventh
move boxes. By the ninth move the game will be over, and
we have no ninth move boxes. This situation is shown in
Figure 14-13.

349



X “FIFTH MOVE
5 CONFIGURATION”

8

v
0| o

@ IF THIS BALL SELECTED,
@ COMPUTER:
@ PUTS X IN SQUARE 3
@ @ @ @ PUTS X IN SQUARE 5
$ % PUTS X IN SQUARE 6
/

/ PUTS X IN SQUARE 7

TWO BALLS OF

EACH COLOR FOR

EACH COLOR FOR @ PUTS X IN SQUARE 8
BALL SELECTED

WHiILE BLINDFOLDED.

Figure 14-13. Boxes and Balls

Now we’ll play a game. For each move, we’ll shake the box
and withdraw one ball. We’ll note the color and put it back
in the box. Its color will determine in which square the
“computer” will play. The human now makes a move.
After the human’s move, we go through the process again,
choosing one ball at random from the next box
representing the current configuration.

Eventually the “computer” wins, loses, or draws. If the
computer wins, we'll go back and add three balls for each
color chosen to each box. For example, if the first move box
was a red, signifying square 2, we’ll add three red balls.
We'll also add three balls of the appropriate color to the
third move, fifth move, etc., boxes.

If the “computer” loses, we’ll take away one ball of the
proper color from each of the boxes involved. If the
“computer” draws, we’ll add only one ball of the
appropriate color.

350



If a particular color (which is really a number of a square)
consistently wins, we’ll start accumulating a higher and
higher proportion of balls of the color (square) that
produces winning games. Similarly, if a color consistently
loses, we’ll have fewer and fewer balls of that color.

Since one ball is chosen at random for each move, we’'ll
have a better chance to withdraw winning colors (squares)
as more games are played. Winning games “reward” the
square choice, losing games “punish” the square choice,
and draws “reward” the choice slightly. This emulates the
reward and punishment of human learning for a
mechanical process and is much more interesting and
faster than just deleting losing paths. This is the method
we’ve chosen to adopt in our implementation of tic-tac-toe
on the TRS-80 in this program.

Algorithms

The algorithms we’ll be using for the tic-tac-toe program
are described in the following section. These algorithms
emulate the tic-tac-toe learning procedure described above
— the “reward” and “punishment” method. They are
divided into two parts:

1. Generation of a table of permutations representing
legitimate tic-tac-toe games, and
2. Algorithms for playing the game itself.

Generation of a Permutation Table

First of all we must generate a table of all the possible
permutations the computer will encounter in playing the
game of tic-tac-toe. As we described above, these represent
configurations where the computer is to play: the so-called
“first move,” “third move,” “fifth move,” and “seventh
move” conditions.

In generating the permutations, we’ll discard those where
the game has already been won or where there are two Xs
(computer) in a row, column, or diagonal. We’ll also look
for the “rotations” and “mirror images” and pick only one
out of eight possible, discarding the rest. At the end of the

351



table generation we’ll have a table of hundreds of entries
that represent any configuration that the computer will
encounter when it is playing the game.

The algorithm for table generation is as follows:

1.

352

Start with a value of the base three number 000 000
000. Increment this value by one each time through
the steps up to a maximum of 222 222 222. This
value is known as the “current value.”

Start with the address of a table in memory known
as the “permutation table” or “PTABLE”. For each
valid permutation, we’ll enter the current value and
some other data. We'll build up this table so at the
end of table generation, we’ll have a table in
memory that holds all configurations.

Take the current value. Test for the end of 1 000
000 000 (one more than 222 222 222). If not equal,
continue; otherwise the table is done.

Count number of Xs and Os in current value. If they
are not equal, this is not first, third, fifth, seventh,
or last move (computer’s turn); if not equal, go on to
the next current value.

Test for number of Xs = number of Os = 4. If this
is true, this is the last move. The computer knows
what to do here, so go on to the next current value.

. Test for all Xs or Os in a row, column, or diagonal.

(All ones or twos). If there are all ones or twos,
discard this permutation as the game has already
been won. Go on to the next current value.

. Test for two Xs (ones) in a row, column, or diagonal.

If this is true, the computer will know enough to
finish the game as it is the computer’s move; go on
to the next current value.

Rotate (and find the mirror image) of the current
value seven different ways. Take the lowest base
three value and compare it to the current value. If
they are equal, save the current value in the
PTABLE, otherwise go on to the next current value.

. At this point we have a “valid” current value, one

that will be saved in the PTABLE. A sample current



value that reached this point is shown in Figure
14-14. Follow the next steps to “process” that value.

QO
Xi0X
STEPS
o] 9° Ea—
k) 1. VALUE=000 002 121
2. PTABLE ADDRESS =9003H
3. VALUE+1060 000 000
4. #Xs=# 05=2 — OK
xjo|x 5. #Xs=# Os#4 — OK
6. ALL Xs OR Os IN ROW, COL, OR DIAG — NO
S 180° 7. TWO Xs IN ROW, COL, OR DIAG — NO
8. ROTATE AND MIRROR IMAGE VALUES
@ @00 @92 121
90° 106 200 120
180° 121 200 o00
270° 821 002 eo1
olx 2> MIRROR e0¢ 200 121
90° MIRROR 201 @82 621
| 180°MIRROR 121 002 000
O 20 270°MIRROR 120 200 104
X 9. LOWEST VALUE = CURRENT VALUE
@] ©° MIRROA
Q 99" MIRROR
O  180° MIRAOR
Q 270° MIRROR

Figure 14-14. PTABLE Initial
Processing

10. Enter the current value in the next position of the

11.

PTABLE.

Count the number of spaces in the current value
(number of zeroes). Put this number in the next
position of the PTABLE. This will range from 9
spaces for a first move to 3 for a seventh move.

353



12. Allocate a number of bytes equal to the number of
spaces from 11.

13. Into each of the bytes, put a value of 4,3,2, or 1, for
9,7,5, or 3 spaces, respectively. In other words, if the
number of spaces is 5, put a value of 2 into the two
bytes allocated for the spaces. The entry for this
permutation is now completed. The sample is shown
in Figure 14-15.

PTABLE

9003H| 46H (000 002 121)
4 iN BASE 3
5

> OO0,
NI |NININ

] [10. ENTER 000 002 121 IN FIRST TWO BYTES OF NEXT PTABLE ENTRY. THIS IS @846H IN HEXADECIMAL
11. # OF SPACES=5. PUT # IN NEXT PTABLE BYTE

12. ALLOCATE 5 BYTES FOR # OF SPACES

13. PUT INITIAL VALUE OF 2 INTO ALL SPACE CELLS

Figure 14-15. PTABLE Final
Processing

What we’ve constructed in the PTABLE above is a computer
analogy to the “boxes” we discussed earlier. Each box
(entry of PTABLE) has a configuration associated with it
represented by the current value. Each box (entry) has 9 to
3 “cells” (bytes), each representing a space or move the
computer can make, reading left to right, top to bottom,
the same way you would scan a page.

Into each space cell, we've put a value which is the same
as putting in a certain number of colored balls.
Considering all space cells together, we have a number of

354



balls, each representing a certain move. We'll add to or
subtract from this count by changing the number in the
space cells as we total up games. We'll withdraw one ball
by choosing a random space cell of the 9 to 3 space cells
available. We’ll discuss this in more detail in the next
section.

Algorithms for Playing the Game

Having established the “PTABLE”, which represents any
possible configuration that the computer will have to deal
with, we’ll now look at how the game is played by using
the table to emulate the “boxes and balls” approach.

The algorithm goes like this:

1. Start with a blank array drawn on the screen with
the usual grid.

2. Take the current array configuration and “analyze”
it — count the number of Xs(computer), Os(human),
and spaces. If entering this step from step one, the
array will be all blanks.

3. See if the computer can complete a row, column, or
diagonal of Xs. If so, perform the completion and
display; the computer wins. Record the win and go to
step 9. If not, continue.

4. See if this is the last move. If it is, the computer
makes the only move available and outputs it to the
screen. Then the computer analyzes the new
configuration and sees whether it wins, loses, or
draws and goes to step 9.

5. At this point, the PTABLE has not been referenced,
but the computer has looked for obvious moves. Now
the PTABLE will be referenced. The computer now
performs all seven rotations to find which of the
eight configurations should be found in the PTABLE.
The PTABLE is then searched to find the proper one.
This search must be successful, as the PTABLE holds
all permutations!

6. Now the computer looks for two Os (human) in a row,
column, or diagonal. If this condition is found, the

355



computer “blocks” by putting an X in the proper
space, displays the screen, and goes to step 8;
otherwise, it continues.

7. At this point, no “block” was possible. The computer
now “draws a ball” by randomly choosing one of the
space cells from the PTABLE entry. It records the
space cell number, puts an X in the array, displays
the new array on the screen, and continues.

8. Now the computer inputs the human choice. It
checks for the proper choice, displays the new array,
and analyzes the new configuration. If the human
wins, it records the win and goes to step 9. If there is
no win (there cannot be a draw), the computer goes
back to step 2.

9. This is the “end of game” step. The computer has a
record of all configurations and which space cells
were chosen for the computer’s move. If the game
was a win, it adds 3 “balls” to each of the space cells
by increasing the count by three. This may require
three adds for a five move game, four adds for a
seven move game, or five adds for a nine move game.
If the game was a loss, one “ball” is subtracted from
the each of the space cells. If the game was a draw,
one “ball” is added to each of the space cells. The
computer now records the win/lose/draw for the
record, and goes back to step 1 for a new game.

There is one slight addition to the above algorithm. If in
step 7, all space cells were found to contain zeroes, the
computer concedes and zeroes the previous space cell
that resulted in the current permutation. In this case, the
current configuration is considered so hopeless that it is
discarded. This condition will rarely, if ever, happen.

356



Implementation
Modules

Tic-tac-toe is implemented as a series of five levels of
modules as shown in Figure 14-16. The top levels of
modules are the main drivers of the program, while the
bottom level has the most rudimentary subroutines of the
program.

MAIN1 | MAIN2 | MAIN 3 | MAIN 4
“HIGHEST

LEVEL"
LEVEL 1

MEMORY | HISTUP | ROTATE | NUMBER | ANALAR | ARRXLA

LEVEL 2

DRAWL |SCRNDS| MSGOUT| LARGEC | DSPMES | INPUT

LEVEL 3

RAND | BINBAS | BASBIN | DIVIDE | DELAY | FILLCH

LEVEL 4

SYSTEM LEVEL 5

“LOWEST LEVEL"”

EQUATE

Figure 14-16. Tic-Tac-Toe
Modules

As in the previous MORG program, each module is
dedicated to a function applicable to the tic-tac-toe
program or to a general application usable in programs
such as division.

357



SUO(}02UU0DIB}U)

3INPO JOL-DVL-DIL "Li-pL 84n6)
31vND3 oV1-0 3
1 W3LSAS %
- ®
[ < ﬂ
@~
Le —
HOTI4 | Avi3a | 3aima | Niasva | svenia | anwd v 1337
®
P
Ha v
LNdNI | S3INdSa| 939Hv1 [LNODSW [ SANYIS| MY ¢ 12
M N
vIXuEY | BvivNy | H3awnn | 31viod | dnisiH | AHowaw 2 13A31
N M —
o > bt o LI3A3
v NIV | ENIvie | 2 NIvw | 1 NIV

S 13AIN

358



Figure 14-17 shows the module interconnections. Each
module generally calls a lower-level module by a CALL,
with a set of parameters in the CPU registers.
Communication is also done by the tables and variables in
the SYSTEM module, which are commonly accessed by
many different modules.

Hints and Kinks 14-3
Notes on Figure 14-17

Here, as in Figure 13-7. it's interesting to
look at the interconnections to see how the
modules relate to each other. Most of the
action takes place in the level one modules,
which call many of the other modules from all
levels. One reason for this is that this
program has heavy processing taking place in
‘'‘main-line'’' code of MAIN1 through MAIN4.

The flow of the program is sequential in these
modules and couldn't easily be broken down
functionally into lower—level subroutines.
There's very little downward communication
from level two to other modules.

To find the modules called by any specific module, follow
the horizontal line from the module to the extreme left.
When the line turns downward, read the lower-level
module called by referencing the connection dots. The
arrangement of the modules is duplicated in the program
listing. Higher-level modules appear first, followed by
lower-level modules.

Tables, Buffers, and Variables

Refer to the tic-tac-toe listings, Figure 14-18. There is one
listing for each module. These were assembled on the Disk
Editor/Assembler, but could have just as easily been done
on EDTASM as one large program, providing memory
requirements were not a factor in your system.

359



tG00LYHY

FYIH AI¥D MVEQ ¢

asW 'INIT 40 1¥VIS! (R+XI)‘H an
gs1 ‘aNIT 40 L¥vis! (E+XT1)*1 at
S$NSO0d HVYHD Jd0 # QVOT! (2+x1)‘q a1
LUAA/ZIHOH AVOT! (L+XI)‘0 a1

ENOQ 4T 09% 800LUV*Z yr
YOLVNIWAL 804 LS3L! Ha40 4o
YALOVEVHD 13D} (x1)'y a1

arTyn ¥4od ITEVL! 51QI¥D*XT a1

X4OLSIH XV¥T1dSIq* SANdSa 110

Y34V AYOLSIH 40 LUVIS! ELaNITi o8 a1
3DVSSAHW XHOISIH! LOSH*TH a1

vAYY AY14SIA qqumm HO7111d TIVD
SANIT 4! ZEg‘od a1

NITUOS 40 LUVLISS NZZHOS ‘da a1

440 T1Y SOIHAVHD! HOQ‘V a1

HOVLS LIS MOVIS*dS a7

wocsspoapopenolNIOd AMINT LUVISIY HO lUViScevuzocovasn

uﬂaluao.ﬁaﬂaﬂﬂﬁnunuﬁbunuuau-'u$0lnutl=.w8#‘tl#.ﬁnnnnﬁl

a WYHD004d DNINNVET JOL-OVL-DIL

ﬂ‘t.tﬂcuanvs&.#au‘nﬂﬂﬂtﬂlﬂnutuﬁﬂ#at'ﬂ“tﬂattﬂnwlnﬂnﬁﬂﬂ

$ovist Fpumz GLDSH TLEYT

60SH GOSH' LDSH ' 99SH* SOSH' HoSH¢ mumz Nowz _umz
y1dloy‘dson’ ooz XON

FIJON‘HANIB HTEY 14 STHLXN® J1S¥d*ONIAOH
m&mzwx LGNIY ‘gl TVNY

QYILON‘2AVUYNY ' LXVHEY XYISIH' GLIAOW *HLAIYD
zwmm<m »zosmx dNLSIH'SANYOS

svania’ »<Ama a:oomz TMVY A SENdSA HITTT A
LOANT*ANVEYTXHHY ‘FLYIOH ‘HVIVAV ‘dIEHON
CLANI'TY XYY YOS ‘NIAUDS

dT1d8Y
LNIVH

€1 NIt 2€Q+H00DE

yaay INIW3T3 NITYDS ISHI! L12+H000¢E
NiSOd YVHD 3IDYVT ISVT! 09+H000E
A¥1dSIA OFAIA 40 LUYIS! HO02€E

Bllﬁcan!-walaﬂals-aaltuacﬁulﬁuﬂnﬂﬂl‘:$ctnﬂcwnlsssltlnu

B $3ILYNdA HALSAS

X3
1Xd
1Xd
1X3
1Xd
LX3d
1x3
LX3
1X3
LX3
AHLNE
4TLIL
and
nb3
ok ]
nba
noa

tdILUY

s
¢
‘
i
‘

'Y

H

ELENTT
RHUVIS

TLSYT
NIFYOS

¥

-laﬂﬂtﬂ‘llﬂﬂcaﬁaaUﬁﬂllwannulﬂu‘uaﬂsaﬂtantnnaltﬂtm‘ﬂﬂwt.

MLSYTELINT T AHUYOS ‘NIFHOS
Jryndd

AEInA
FTLIL

O u0O
0En00
02100
0t 400
00 H00
06€00
08£00
0LE0O
09£00
06£00
0/E0D
0EECD
02€00
o01E00
00E00
06200
08200
0200
09200
06200
05200
cE2oo
02200
01200
00200
66100
0g100
0LL00
69100
05160
oio0
0£100
0z1i00
01100
00100
06100
0g100
0L100
59100
09100
06100
onioo
0£100
02100
oLi00
00100

00 3L
20000 2

20000
40000
20000
#0000
0hED
20000
0g
20000

aq
ad
ad
aq
ge¢
34
aa
aag

an
3¢]
134
ao
10
L
It
L€

18200
18200
16200
12200
10200
13100
15100
sLi00

1 RL00
2100
13000
18000
8000
15000
1 E000
10000

OhdE
€aot
2€0¢€
000€

360



WE3d 40 INNOD HZITYILINI! TH*(F1dON) al
oyaz! 0°‘TH a1

Fays! TH HSNd

279VI W34 40 $93yqavi 419V ILd *TH a1

“TVNODVIG HO ‘NWNT0D ‘MOM V F137dHOD

Ol L¥VLIS LV HONONZ SMONX ¥HLOIWOD °*0Q OL LVHM SMONX
42INdHOD HOIHM HITH FSOHI NVHI HHAHLO (ISHIJ STAOH
¥3LNAWOD ‘1XIN FAOW OL HILAdWOD) FWVD F0Ll-0VLI-3Id
SNOILVIAWEAd 3T9ISS0d 1TV FLNJHOD INOILOYV AWIL ISHIJ

ADYSSAN Indino! L1NODSH 1Yo
IHVLS N3ZHDS! NIZYOS ‘X1 a1
JOVSSIN wINO LIVMu! EDSH*TH at
$03s £ iv1aa! ry1da 11V0
SH 000€E* 000E‘TH a1
ADYSSAW Lndino! LNOOSH T1V0
LYVIS NIZEDs! NITEDS ‘XTI a1
IDVSSAN FTLIL! 2OSHTH a1
INIT XYOLSIH FZITVILINI! HOT11d 110
SANVTE 821t gz ‘od a1
ANVIEY oty an
INIT X4OLSIH 40 LHVIS! felel ONI
HAINTOd XHOLSIH FZITVILINI! FA*(STHIXN) al
L=3NIT XHOLSIH 40 LUVIS! L-X¥ISIH'3q a1
VT4 IHIL ISHUIS 13S! vi(disud) at
v 0L Lf v NI
‘
altttll'-tll-l.t-‘u--“'.ttla"-lIOICt‘.l-l-ll.-.l.-u
® FYAH SNOILOV IWIL JISHIJ w!
ll-nl't-.ct--l..clctttal.n-l-att-.tt“.t-tntltiultu
a9vd
IWIL LSHIJ LON 4I 09! ZNIVN*ZN dr
1SAL! v 40
V14 FWIL ISHYIZ 130! (d1s¥d) 'y a1
SHOILOV AWIL LSHIJ 404 LSIL !
HEEWON FAOW 0HEZ! vV (ONIAOH) a1
378YL IAOW OMAZ! HOT1Id T1Y2
SILiE g! g'og an
SSAYAAV FTEVI FAOW! GLEAOKR ‘ 3Q a1
0! v HOX :g00L¥Y
. 279V] FAOW 0Y¥3Z ¢
INIT LXIN Y04 05! So0luy ur
INIT IX3IN 0L INIOd! 28 X1 aay
INIT 434 sILXG G stog at
INIT MVHa! THYEA 1190

06800
08800
0Lg00
09800
056800
ohgoo
0€800
02800
01800
00800
06 L00
08 Loo
olLloo
0900
05100
04 L00
0ELOO
02Loo
olLLoo
00L00
06900
08900
04900
09900
05500
o900
0€900
02900
01500
00900
06500
08500
0L500
09500
05500
ORS00
0€500
02500
01500
60500
061700
08700
0Lyoo
0gnoe
0s 400

#0000
0000

20000

#0000
#0000 12
#0000
#0000
8d€0
20000
#0000 (2
#0000
#0000
0800

oe

80000 E&

addda
#0000

12210
#0000
#0000
%0000

8000
#0000

€d

G000
20000

2z
ie
kS
Le

as
ayq
ie
as
X4
as
az
X4
aa
[4¢]
gE
£l
[efc
il
2g
ot

4]
lg
vE

43
as
3]
Li
av

gl
aaq
10
as

11800
13L00
1qloo
1V L00

s Lloo
1E£200
+0L00
14900
sV 900
L1900
1£900
+ 0900
Q500
sVG00
18600
+ LS00
1£500
10500
g id
10100

10100
16100

18100
16100

+2h00
+d£00
s 0£00
16€00
18€00

+9E00
+ hEQO
s LE00
13200

361



*SNOILISOd 8 40
TYIOL ONINVW ‘SAVM L AVHYY ZILVIOH ‘ONINMVET #ILSVI
o4 AAVH 01 ANV SINAWIYINDIY TDVHYOLS NO NMOQ 1nd OI

a‘o*y 1TV ¥od 05! 0zZoLuY ZNra

YALNIOd dung! H ONT

s3k 4I 0D HLOLYY ‘2 dr

LYNYIE INO ‘SX OMI: 2 40

si3x d4I 00! HLOLYUY*Z dr

(egL=n+h+h) SO TIV! Zl d2

sdx 41 09! hioLuv*z dr

L(E=L+i+L) SX 1V € 42
FnTVA L3D} (TH) 'y a7 :020LuY

37€v¥l 40 $53I¥AAY: GITYNY *TH al

$OVIQ *S7I00 ‘SHO¥ @° 8'd a1

XVHYEY FZATIYNVS HYTYNY 11Y0

IVHHY d0 SSIYAQV! LIVHYEY 'XT a1

{JIH 0Q 01 LYHM SMONM ¥ILNJWOD
STYNODVIA HO ‘NWNTOD ‘MOM vV NI SX OML 404 ISdL OSTV
iNOM NIFE
1qvINIY SVH AWVO 4T NOTIVIAWYAd SIHL QUVOSIA "TVNOOYIQ
H0 ‘NWNT0D ‘MO¥ ¥ NI SX TTY ¥O SX 11V 404 IS3L MON
s3x 41 0D nLOLUY ‘7 ur
AAOW 1SYT SIHL ST®
PHADW ISYT NO 0G 0L IYHM SMONM SAVATY ¥IIndHOD
g = S # = SX # 4T 1SIL MON *I¥IH SO 40 4 - SX J0 #

kg dd :GLOLYY

s

LXaN Xyit 050LYY ue

¢ L30¢ TH d0d tiO0LYY
§ax 41 09! SLOLHY 2 ur
LSO 40 # 0l 1vndal a d2
SO 40 # amom AooZvnc a1
a NI Ledi ¥ia a1
sX 40 # 139! (XoH) 'y [t
SIYLOL aNIa! qFENRON T1¥0
$SIYAav xvyav! LAVHHY *TH a1

"NOILVINWYEd STHI QyVdSIU
TvAdI LON JAI "AVYHY NI SO GNV SX 40 YIEWAN INAOD

RMINE LS4Id NI 3AVS! THA(EYL10d) aT
€ gsvd 01 I¥IANOD! SYENTE 17Y0

L¢ KVHHY OL LNIOd! LEVHEY ‘XT a1

# TIVNIDIHO 3F¥OLS3Y! 04 TH aqy
3NOa I 09! 09034V *z dr

aNZ 404 Is3L’ 08‘TH 28§

AYHYD HYI10! ¥ e}

(¢ asvg) 2ze eee eeze! €896t ‘08 a1

¢ INTHUAD IAYS! TH HSnd *Z10L¥V

ORELO
0EELD
ozZELo
oLELO
GOELO
06210
08zLo
0izi0
0getio
062L0
onegio
0E2i0
o2eto
oteto
0o0eto
06110
ogtLto
oLLto
09110
0Giio
ohLLO
0€LLO
getLtLo
OLLLO
00Lto
06010
08010
0L0LO
09010
0s01L0
oKoLO
0£01L0
0goto
040L0
000tL0
06600
08600
0L600
09600
05600
04600
0E600
02600
01600
00600

20000

80

#0000
40000 12

64
wo
6L
£0
#0000
#0000

20000
#0000

50000
20000
20000 L2

16210
et

£d0h

0l
24
v
a4
Vo

¥o
a4
qL
12
30
as
ad

gc
a4d

gt

82
ve
VE
LS
vE
as
te

44
a0
aa
60
Yo
ad

Lo
S3

14000
13300
16000
«Looo
s 1200
+ 2200
1 4400
1 Q400
10400
16900
1 LE00
s #9000
+» 0800

1dV00
Y00

VY00
16700
LY 00
19V00
s EVOO0
+2Y00
13600
10600
16600

19600
1E600
14800
13800
18800
16800
18800
15800
s 1800

362



HIGWAN qy¥VYISIq: TH d0d 09014V 00810 1d 16210

FONIINOD! 2L0LHY dr 06410 11800 €0 19210
HIEHON dWna! H ONI :050LHY 08410 ] $ G210
(2-XI)*H aT 0LLLo 34 99 agq 12210
# 130! (E~XI)*1 a1 09L10 a4 39 ad 13140
L¥Y1S IAITYLIY! XI d0d 06LL0 13 aa 1qLLo
ANIE ! 1N0HSKH 11Y¥0 onlio 80000 a0 YLLo
INIT 40 d0 ISvVT! TISYT1*AI a1 :1010lYY 0ELLO #0000 t2 g4 i 910
HSVa! LLOSHYTH a1 02Lio #0000 12 1E110
0vds 4I 05! ONOLUY ‘2 ey 0LLL0 £0 gz dLiLo
Ioyds! OLOSKHTH a1 00LLD #0000 12 13010
LIg LSy1 139! L any 06910 L0 91 10010
SITHINT d0 # 130! (aLdoN) 'y a1 08910 #0000 VE 16010
SINNOD 3OVdS FZITVILINT! HOTTId TIYD 04910 80000 a0 19010
LYYLS FAYS! E:fl HSnd 09910 sa 15010
2/t ¥ THS 05910 4€ €0 1E0L0
Sdovds #! 2y [} ongto 6L +2010
JY0OLS LXIN ¥04 FAVS! X1 HsNd 0EgLo s3 ad 10010
E+SEIVdS #+HING! 28°x1 aqy 02910 60 aq 13400
28 NI MON INNOD! 0'd al oL9to 00 90 10400
g 01 3q dod 00910 La 48400
LUYIS! XI HSNnd 06510 s1 aa 16400
E+YLNd ! XI NI 08610 £2 aq 1 1400
XI ONI 0LsLo €2 aa 16400
XI NI 69510 £z aa «Ed00
qY01S! 24 (2+XI) al 06510 20 L4 aa 10400
O NI Ilnd! v*'o a1 on&Lo an 14900
INNOD 135! (dson) ‘v a1 DESLO 80000 VE 10800
NOILVLAWYEd NI S3IOVdS J0 HIAHON QNIJd MON ¢ 02sLo
qyois!t X1'(d1d40N) a1 0LGL0 #0000 22 a4 + 8300
L A8 dHng! X1 ONT 00610 £g a4 19300
SETYLNI FTdYL WYdAd ¢ 1dD!¢ (3LdON)*XI a1 06110 80000 V2 aq 12300
{da 1ndIN0 XISNOINOMYT SNOISHIA HIATEWISSY TWOS 144 Fd! 08 hio
a1noHs {  )'AI Q7 H0d IA02 dO awsewDNINYVMaswmaw' oLtio
JLXE SW JY0IS! HY(L+XT) a1 0gnL0 10k aq 14000
3LXE ST FYOLS! T7(XT) a 0snio 00 §L aa +3000
SSayaAay FTEVLI LXFN 139¢ XI d0d ortio [ 1Yaoo
# 139¢ TH dod 0EHLO0 R 6000
"NOTIVINWHAJ FTEVMOTTV 40 TH NI 30IVA FAVH XTTYNIL [MIHM !¢ ozhio
ayyosSIa *ISIMOT LON dT! HLOLHY ZN ue 0LHLo 0@ oe +Laoo
FYYdHoD ! 4q T 24s 00 NLO 2s aq 15G00
Xgyyo Hyao! v 40 06€L0 PA:| s 1A00
qavst TH 4sad og€to foic] 1 £@00
TYNIDIHO 139! TH d0d 0LELO 13 12000
30 NI FnI¥A ISINHOT IAVH MON ¢ 09EL0

aryioy! JLVLIOY TTY0 06ELD #0000 Q2 + 4300

363



§x 2 41 09! zZotiyviz qyr

SX 2 404 I$3L! 4 40
FNTVA 13D} (TH) 'Y a1 :iolluy
sENTVA 8! 8d an
oYTA ‘1100 ‘MOY 30 LYVIS! GLTYNY *TH a1
FZXTVNY ¢ HYTYNY 7VY0
SSIHAQY Avyuy! LAVEHY *XT a1 :00LLHY

4<zco<Hamo.zz3qou.30xw
Vv ONILETdWOD =~ JAOM ¥ILNIHOD $NOTA€0 4T 3AS ISHIA !

# dAOM dung! (7H) aNT

S$SIHAAY # FAOW! ONIAOW*TH a1
$ adE  JdTINIVH
=ntta:t.'aﬁm.tnwcuaawanstunautuuatattuuﬂsﬁnssswtuﬁmtnam
[ FYIH JOOT NIVH at
lcﬂaatssn-aumHuuuasauﬂu-tatnauvu#-mnaautanuanutuu‘auta»

IYEHY 0¥dZ? HOT1Td T1Y0

LYVIS Avydy? LAVEHY ‘3d al

ougz! ¥ HoX

IN3W3Td 6 HOd' 608 a1

godas € xv13Ia! ry1da 17Y0

SH 000E* 000E *TH aT

3IDYSSAH Indlaot LN09SH T1Y0

LUVLS NIFYOS'® N3BHOS ‘RI a1
FOVSSIAN FTLTL? 2OSHTH a7 :0L0LuV
.u.miaﬂctuaaautlﬂstu-auu-usuauuma‘na-tta'ttttn:tuaﬂtawM
i FWIL ISHI4 ION 4T X¥INT a!
latnmctntﬂaut-unaavnnn-aausmaa#uu#aﬂ‘!nunnlux-atuntaﬁ#m

YANTIYH 13

60SH 8DSH® LOSH' 9OSH* 6DSH* NDSH  EDSH 2OSH LOSH 1x3

YLJLOH ‘dSON‘OON‘XON 1X3

ALJON*HANTY *3TEVId  STHIXN ‘J1SHI‘ONIAON 1Xd

MIONIH“IANIY ‘LTVNY 1X3

GVLLOH ZAVHEV® LXAVHUY XUISTH GITAON ‘1ATYD X3

NIESYE‘ZNOWAW dNLSIH  SANYDS ixa

SYGNIE KVT3A* LAODSH *THYEA ‘SANASA HOTTIA 1xa

INANT ONVH*YIXEUY  3LVION ‘HVTVNV ‘udanON 1xd

ELINIT AHYVOS *NIT YIS 1x3

dTNIVH RYINg
SNIVH 1L

ang
Anunat $ noF  SHIVH
-m.maumuulau:auxﬂnvnla-atnat-uul‘u-tatlﬂttamunuamumitum
® 34IH SMOTTOd 3TNAOW ENTVNW [y

ou.-‘unnu.uuaasn:un-tstuaa-nusu:-u:-su-::-aaanu--tuu
YyaLNIod 3T4vi! X1 dod

08100
0LrO0
09100
064700
ot noo
0E400
02100
01100
00 K00
06€00
08€00
0LEOO
09€00
0s€oo
ox€oo
0E€€00
g2Eoo
oLEoo
00€£00
06200
08200
0L200
09200
05200
04200
0E200
062200
01¢00
00200
06100
08100
0LL00
09100
06100
0Ri00
0ELOO
0cLo0
oLL00
00ti00
09810
053810
ofgLo
0EBLO
028i0
oigio

50 ge
20 34

g0 90

80000 12
#0000 QD
#0000 L2 dd

80000 (2

20000 U3
20000 L1t

EY

6000 10
#0000 @O
gedo i
20000 @D
#0000 12 Q4
20000 2

13 aa

1 Q200
19200
1V200
18200
16200
12200
13100

1QLo0
1Vi00
W1i00

cLioo
s hi00
1 €100
«0l00
1 Q000
1¥000
1 L000
1£000
10000

10210

1VELo

364



ANNILNOD!

UILNIOd dWng!

30¥ds 41 09!

18aL!

INIWITE 139!
SSIYQAY AVuyv!

ON 4I 09!
L1SYT LT ST!
JAOW 40 # 13D!

NOTLOV aN¥ uOd ob!
AvrdsIat
YIHY FDYSSAH NIFHOS!
JDYSSANW wiNIM Ia!t
ST795 Lsnrav!
£
41¥adn XAYOLSIH!
NI#t
NIIEDIS FLvadan!
tanNnod 24 ISnn!
§SIYAAY ANIYA IAVS!
NIVOV INIWITI 0oHIZ!
oyaz!
$3% 41 09!
CHLIATINOD
TYLOL MEN 199!
SSIYaAAV INTIVA?
S$SIYAAV ININITI!
NIVOV d3ZXTVANV!
$S3YAAV XVHYHV!
X 401§
v oL tf
$S3YAQY INFHITE HAVS!
LXEN Ryi!
4IINIOd dHNE:
Iovds 4T 09¢
0 404 lsal!
ININ3TE 139¢
SSAHAAY AvHdv!

oLLluy
TH
Litigvz
v

(1) 'y
LEVHEHY *TH

NLLLEY*2ZN
4
(ONZAOW) 'Y

JAQW LSVYT ¥O04

VANIVH
LN0OSH
NITYOS XTI
8OSH*TH
XY OHAN
£y
dNISIH
Mty
SANY0S
ROLIYY
XT

v (TH)

¥
90Li¥y‘z
£

(XI)*‘y
X1

TH
HYTYNY
LAVHYY ‘XTI
VE(TIH)

v

TH

€0LLYY

‘TH
SOLLEY'2Z
4

(TH)Y ‘Y
LAYHYY ‘1TH
TH

TYNODVIQ ¥O ‘NHRT0D ‘MO¥ dHLI F1ATIHOD

d78ISS0d NOILATIHOD ON?
8§ LON 4I dNNILNOD!
YILNIOd dWnd!

60t1uY
Lotiuy
TH

gr
ONT
ir
40
a’
a1

dYIH JAa0H

gr
43
at

aT
a’
ONI
HSNd
ar
ONT
yr
g0
at
aT
HSnd

ar
ZNra
ONI

OLLIYY

ISV ¢

60LLYY

131 MON ¢

90 LYV

sollryv

fOLLYY

£oLiyy

20LLlY¥Y

m2<omzmaz<_
ISNIM ¥3LndHOD !

04600
0E60C
02600
01600
00600
06800
08800
0L800
09800
05800
0ngoo
0€g00
02800
oiLgoo
00800
06100
0g 100
0Lloo
09.00
05L00
owloo
0EL0O
oz loo
0tloo
60.L00
06900
089300
0L900
09900
06900
0300
0£900
02900
01900
00900
064500
08500
0L600
09400
06500
0ns00
0£G00
02500
01G00
00600
06700

64
€0

20000

VE
G0
#0000

#0000
#0000
#0000 L2
#0000
#0000

90
€0
00 3L
i3

#0000
#0000 12

€0

40000

€
84

12800
51800
14100
13100
1@ L00
¥ Loo

i1gl00
+9L00
s€L00

10L00
+ @900
16900
19800
s£900
s1900
13500
12600
16500
s LS00
16500
1 hS00
1 €500
11500
s dh00
I R00
1Y KOO
64700
19400
+12ho0
11 K00
+0hoo
+dE00
1QE00
+12€00
sVEDO
16€00
18E00
16£00
+hEOD

+2€00
10€00
+ 200

365



andg 06€1L0

$ adba  sziluv 0gELo 10000
n-nlu-u-#'na‘atmautaa-‘a‘aaau-tlanltu.utunaaunﬂunumﬂnu Oﬁmeo
8 FYAH SHOTTOL F1NAOW ENIVH ot 09ELD
anuanm.anu-‘_-n=aam#l‘ﬁ'nas#uucuaaattawtwac.—-atluanaaw omm_.o

NOSTHVAWOD LXAN 404 05! 0ZLiyv ur OHELD 63 81 1VA00

RHINZ LX4IN OL INIO4! 08 *X1 aay 0EELD 60 ad 18000

k¢ ONI 02EL0 £0 1 LG00

X4 NI 0lELD £0 19400

YEQVIH Ssvdig! o4 ONI 00E1L0 €0 16000

08 NI MON! [ a1 06210 00 90 +£@00

§d0vds 40 # 139! (2+XI)°0 an 08210 20 a4 ag 10000

aNnod 41 oot SeLIYVL ue olzto 20 82 13000

vadd Yod Isari 304 o€s 09210 2s a3 10000

XHHYD ¥vITO! ¥ uo gseto A 18300

(L+XI)‘H a1 oxzio L0 99 aaq +8000

XHINE 13Dt (X1)*1 a1 :02Llyyv 0E2L0 00 39 aaq 16300

474Yl WYId 40 IHVIS! 318VLdiXT al 02210 #0000 L2 aQ 11000
igNno4d 3€ LSnu ¢ oLeLo
INIYA HOJ4 9TV NOILVIOWHHd HOMVES *dd NI 907IVA ISITIVRS ! 00210

SANTTYA FLYIOH L ONIJ! FLyioy 11V0 06110 20000 a2 13500

TYRIDIHO! TH' (8YLIL0H) a1 08110 #0000 22 (6800

YAGHAN € ASYE OL LYFANOD! NITHSYY 11Y0 0LLio #0000 43 18600

AVHHY Ol INIOJ! LXVEYY ' XT a1 :uillEv 09Li0 80000 LT 44 1900

NOILOV aNE HO4 09! YANIYH dr 05110 #0000 €D ylgo0

AVI1dSIqQ! LO0DSH TIVO ohiLo 80000 a0 +3Y00

IDVSSIN NIFYOS! NIFYOS ‘XL a1 0ELLO 20000 L2 a4 Y00

FOVSSIW w IMVHdu! 699H* TH a1 02LLo #0000 1€ $LY00

7730 Lsnrav! XY ORAW T1Y0 oLLto #0000 d2 VY00

Myga yod' Ly a1 00L1L0 L0 d€ i12V00

glvadn A¥OLISTH! dNiSIH T1Y0 06010 80000 42 13600

Avya! daty an 08010 w4t 14600

NIZ¥OS Flvadnt SANUDS 11Y¥0 0LoLo #0000 a3 V600
dYIH Myya ! 09010

8 TV i0N 4TI 0D ZLLLNY NP 05010 gd 0l 18600

YALNIO dHAg! TH ONT oRoL0 £z 1 L600

NIM 4T 00! 90LLEV*Z yp 0E0L0 Zo 82 16600

NI# §yOod JsdaLt € dd 0Zol0 £0 34 1£600

SanTYA 1d0¢ (TH) Y a1 ieltlyy 0L0t0 ql 12600

sanIva 8¢ ge a1 00010 80 90 10600

SS3I4Qay Avyev! LAVHEUY ‘TH a1 06600 #0000 1€ 13800

AZETVNY ! HYTYNY 11¥0 08600 #0000 a2 V800

SSIHAAY AVHHY! LAVEEY *XI a1 6L600 §0000 L2 aq 19800

X F¥0ls! ¥ (TH) a1 09600 1L 16800

X=it ¥ ONI *1i1LyyY 06600 o3 +hgoo

366



SO OML J4I 09! ZoLruvie ye 06600 S0 g2 « 0RO

SO OML HO4 IS3%! 8 d9 04500 80 34 13E00
INTVA 13D ety 47 :iobi¥v 0ESO00 3L satoo
SANTVA 8¢ g'd a1 02500 80 90 18€00
ovIa ‘700 ‘HOY 40 LuVIS! gLTYNY *TH a1 01500 #0000 12 18E00
TZRTYNYV ¢ Y TYNY 11¥3 00500 0000 @0  «SE0G
$SIYaaAY Avuyy! ZAYHEY *XT a1 06700 4 000 12 aa « h500
TYNODYIQ HO ‘NWD'10D ! 08400
HOH NI SO OMI - ZAON uHNINOOTHw HHIOJWOD JI IS ¢ oLnoo
FAVS ! TH ' (MONIY) a1 09500 #0000 22 13200
SIOIANI FSHIANI OL INIOd! 08 *°1H aav 05100 60  .aeoo0
A3ZY f3T9VI SHOIAGNI 3ivioy! YIGNIY®0® a1 ok noo #0000 LO  1VE00
INIWIOVIdSIa 139! 1 dod 0EROO 13 46200
IVHHY JLVISNVHLS ¥IXHUY T1¥3 02400 0000 43 19200
XVHHY DNINHOM! ZAVHYV'AI a1 0L400 #0000 L2 @d 22800
AVHUYV TYNIDIHO! LAVHHEY ‘XI a1 00400 #0000 L2 4@ 43100
S30TANI 0L INIOd! o8 H aav 06£00 60  .dl00
TEYL SEOIANI FIVIOH! LaNIy ‘o8 a1 08€00 20000 L0 V100
a 3FAYS! TH HSnd 0LEOO S 16100
6aa’! J8*TH aay 09£00 60 1800
Leqt boL: d0d 05£00 19 slloo
geqt TH*TH aay onEOD 62 19100
req?! TH*H aqy 0EE00 62 16100
Zaq! THTH aay 02£00 62 s 11100
taq! H Hsnd :0L0lHY  olfo00 s 4EL00
114 SW 13! 1t 138 60€00 ad €0 . LL00
A4¥Y0 ON 4I 09! 0LOLHY*ON ur 06200 20 0t 13000
31X8 SH 14IHS! H T4S 0geoo € €3  .Q000
FIX9 7 LAIHS! 1 s 0L200 € g3 4€000
INIHIOY1dSIQ ONIJ? 08°¢1H o8s 09200 2n ad 16000
XUHVD ¥vaETO! v ¥O 05200 Lg 418000
HQQV 314VI NOTLIVIOu! gY110H ‘o8 a1 07200 #0000 L0 15000
NOILVLIOY 40 ss3uaay 1aD! (41d10H)*1H a1 0€200 #0000 ¥2 42000
NOILVOOT FAVS! )43 HSNd :000lMY 02200 S¥ 4ad 40000
JYIH F74dVI NOILVIAWMAL NI QNNOJ RHINF ¢ 01200
LANIVH ‘2LOSH dT14Y *dINIVR Lxd 00200
6DSHGOSH  LOSH 9DSH  SDSKE OSH EDSH ZDSH* LOSKH X3 06100
HIdLOU dSON*OON‘XON X3 08100
IIdON ‘MANIH ‘319VId *STHIXN *JLSHI‘ONIAOH 1X3 0Li60
WIGNIY LANIY ‘dITVNY Lxd 09100
GYLI0H FEAVHHV  LAVUYY ‘XUISIH ' GLIAOH *HIATYD 1X3 05100
NIGSYE‘XHOHIN JNLSTH ‘SANUDS 1x3a ofloo0
SVENIG AV TIIQ  INODSH THVHA *SANASA HOTTIS 1x3 0E100
ININI*ANVE VIXEYV ILVION *SVIVNY ‘YT aRAN 1xd gzloo
ELANIT  RYHVOS ' NITYUDS 1xd siio0

ENIVH JTLIL goloo

367



SSTYAQY ITAYL WYAd 13D XI d0d

t0LlLuy

tg01ryy

f901LHY

SGOLLYUY

ThOLLYY

tEoLIyy

feoLLyy

ZAVHYY NI X FHOLS! v*(IR) a1

¥ 0oL 1¢ L4y a1

IN3WITd 40 ssT¥aay 13of TH dod
1720 INEW3TE 40 XFANI SYH MON 3g !

QydEZ 41 KHOQ LNnOD! 80L1HY ZNra

$909Yd4S 40 INNOD dWng!f qa ONI

0¥dZ LON JI §sSvdig!l oLLIyvizN ye

oudzZ Y04 1S3L! ¥ i}

IX3N 01 dJHng! TH INI

INIHATE 139! (TH) v a1

AVHYY 40 sszyaav! ZAVHYEY'IH a1

g 0L L+XHANI? 1'a a

INnoo! [ R (] a1
INIWEATE uM007THu J0 XHANI SNIVINOD HON TH !

L+INANITE 30 XIANI! o8¢ b6

o HyyaIo! v ¥0

L~SSAHAAY AVHHY! L~ZAVHYEY ‘04 a1

SSIYAAY INIWITT FAVS! TH HSNd

ONISSHO0¥d IX3IN uOd4 0¥IZS ¥4 (IH) a1

v ooyazt v HOX

[aNnod g ISOM® 7O LLYUY §r

40017 yodt XI Hsnd

NIVDY INIWETY oyaz! V() a1

ougz! ¥ HOX

S¥X 41 0D LLRRA: VA up

LALATIHOD ! 6 49

TYLOL MIN Lant (XT)*v a1

SSIHAAY InIVA! I dod

SSIHAAY INZH3TI! TH d0d

SSIYAAV INIWITI! HYTYNY TV

SSHYAAY AVHHEV! ZAVHEY *XI a1

X 8HOIS! ve(TH) a1

¥ o1 1! ¥ ONI

SSAHAAY INIHIIZ FAVS! TH gsad

IX3N Z¥Lt €oL1yv ¥p

YINd dHng! TH ONI

FovVds 4I 09! GOLIEY 2 gr

0 ¥0d4 Isait ¥ ¥0

IN3IWAT 13D* () ‘v a1

S$SAYAAY AVHYV ! ZXVHEY fTH a1

20TVA HZATTYNY FAVS! TH Hsnd
%0078 404 X NI Ind =- GNnod so ol !

9T4ISSOd NOILATAWOD ON! G2LIY¥V ur

g LON 41 INNIINOD! LOLIUY ZNPa

BILKIOd dHng! TH ONT

0i0L0
00010
06600
0gé600
0L600
09600
05600
04600
0E600
02600
01600
00600
06800
0ggoo
0.800
09800
05800
0hgoo
0€800
02800
01800
00800
06 Lo0
0gloo
olLloo
09.00
05100
onloo
0€ .00
02L00
oLLoo
00.L00
06900
08900
0L900
09900
05900
048900
0£900
02900
01900
00900
06500
08500
0L500
09500

20000

o
4434
2

edddd

€3
s3

80000
20000 L2

64
£0
#0000

41
84

aa
LL
€
%

18800
11800
16800
+ 1800

12800
11800
11200
va2L00
1@ Lo0
s0l00
16100
+8L00
1G000

1EL00
12L00
13900
13900
+d900
10900
V900
18900
1 L900
+9900
15900
12900
13500
1@500
12600
16600
16500
71500
1 €500
12500
10500
13700
1T h00
12000
+gh00
18400
sLtoo

15400
+En00
12ho0

368



INROD-#ANYY!
IHHVD uvETo!
aq NI INROD “1H NI #ANVH!
[

40 0L HIAISNVHL!

# WOQNVH 135!

NOILOV GNZ ¥Od 05!
JQIONCO HO4 D!
xy1dsIat

YAHY FDVSSIEN!

FDVSSAN » JAIONOD Iu'
ANIT oyaz!

osgz?

3118 $1¢

FLXd SH!

$SIYAAY ¥NIT OL INIOd!
F19YL HAOW!

08 NI MON!

0 NI MoON!

2aXAANI !

XFANT FAOW ISVT GNIJ!
# FAOW 13D¢

STHL JAOREY °0 JUV
0437z LON 4I 09!
Fays!
YAINIOd L130¢
9871 FoHan!
gSH INNOD 13D}
aNd LON J4I 0!
AMINT IXEN Ol dWng!
TH NI Tvioldns?
40 NI MON!
INnOD 139t
TWLOL ¥vatol
£3a0VdS 40 ¢ 190!
FAVS*
¥aqv FTEVI WEad Ld9t

AVTdSIQ ‘HAOW OL 0D MON!
ONISSTo0ud IXIN HOd AAVS!
L+qay 173D ds MON!

Fa*IH 2€s
v ¥0 :OGLLYY
TH3a x4
aa 40d
o8 HS0d
anvy TIVD :0HLIMY
LANIVH dr
004 a1
LNOHSH 11V9
NIFEOS FXI a1
ZLOSHTH at
¥ (H) a1
¥ yox
(1+X1) %1 a1
(XI)*H a1
DH°XI aqy
GITAOK XI a1
o'd a1
¥4o a1
Yo Ty
v ]
(ONTAOH) 'Y a1
*gqIONOD ANV MNIT SNOIAZHd ONIOHIZ XK€ XUING !
XYINZ SIHI 40 S71133 Iovds 11V ¢
OfNLIEVEZN ue
XI HsAd
X1 dod
1 4o
H'Y a1
SELLEY ZNra
XI INI
3a°H aav
o‘a a1
(E+XxI1)‘3 a1 :SELL¥Y
0°1H a1
(2+XI) ‘e Q1 :0ELLIYY
b ¢ HSNd
XT dod iGZLlyv
$d0vds 7TV NI INAOD TVIOL ANIJ ¢
ZLLLIYY ar
X1 HsAd
X1 ONI
XI NI
X1 NI
X1 aNI
30 *XI aav

£-77149 dS Ol SINd MON XI!

oLtio
og4lo
(3 19]
ontlo
oERLO
02hlO
oiqlo
00hLO
06ELO
08ELO
OLELD
09EL0
0sELo
oRELO
0EELO
02€Lo0
0LELO
00ELO
062L0
0geio
olzio
09210
0selo
onelo
I3AN
02210
oLzLo
goeio
061t0
ogLio
oLLLO
oglic
06110
onLLo
0ELLo
0zZLio
01iL0
00110
06010
080L0
ololLo
03010
06010
onoLo
0E0LO
0201i0

2a

#0000
20000

20000
20000 {2
«0000

10 49
00 99

w0000 &
00

80000

Ge
a3
%24

9d

a0
€0 3%
0000
20 9
Gd
%24

19110
k|
£z
€2
4
€2
61

0e
aa
aa
:4
oL
ol

61
9l

12
aa
aa
aag

€D
aq
aa
aa
ada
aq
aq

+ 1300
10300
+ 000
+3Q00
1 Qoo
1¥a00
1 L0000
16Q00
+2000
13000
18000
1¥V200
16000
19000
1£000
11000
+ Q900
+H900
s1YE00
16€00
18400
16900

+£E600
1 1800
1 4Y00
+dV00
1QVOo0
1 GV00
16Y00
18Y00
+9VO00
1EVO0
1 0V00
1a600
18600
16600

19600
+ 1600
12600
10600
13800
13800
Y800

369



ZAVHYY ‘XTI a1 0EBLO 20000 L€ ad 1¥eLo
(MANIH)*TH a1 02610 #0000 Ve 1 L2100

AVHYY 30400S
ISIT SIDIANI 0L HILNIOd

*XYHHY TYALOY ¢ oL6L0

0L LMIANOD =~ AVHYV ONINHOM NI X NY QIHOLS ZAVH MON ! 00610
ASH 3HO0IS! at (1K) a1 06810 2L 19210
TH ONI 08810 £z $ 5210
s HHO0LIS! 30H) a1 0LgLo €l chELo
Fovds 40 sszdaqvi aq 23a 698L0 gt €210
L+SEEHAAY 17301 34 d0d 05810 La $22LO
# 3A0W 0L INIOd! 3qH aav ongLo 61 V1210
ssayaav 3ITEvL JAOW! GLIAOW‘TH a1 €8I0 #0000 12 1qLLO
40 NI MON! 0'a a1 028L0 00 91 10LL0
4 NI MON! v's a1 oLgio as 3:484]
2 XJANT ! Yoy 008L0 Lo VELO
L=¢ FAOW! v 23q 06Lt0 ag 16LLO
¢ TAON HILNJHOD! (ONJAOH) ‘Y a1 reLilyy 08 LL0 80000 VE 1910
X F¥ols!? ¥vi(L=-XI) a1 oLito 44 L aa s€LL0
x# Ly a1 09.10 to 3a€ sLLLo
LNEWATE LON 4T 09! oLtlyy ZNra 0S4L0 93 ot 13010
0 LON 4T 09! 0LLIYVZN up owiio gd o2 1Q0L0o
¥ILNIOd dung! X1 ONI 0ELLO £2 aa 18010
0 Y04 Isar! v HO ozLio Lg 1VOLO
IN3INETE 139! (XI)'v a1 foLLLyv oLlio 00 3L aa s Loto
IVYHHY DONINHOM 30 Luyls! ZAVHYY ‘XTI a1 00LL0 #0000 L2 ad 1E0L0
€ 0l L+1780 40 #! 1'g a1 06910 Sh 12010
h+$T1730 40 # ONIZ! 30 TH ods 089t0 2s a3 + 0010
RYHVD ¥vI10! ¥ HO aLgt0 Lg 13400
L+SSIYady 1130t XI Hsnd 09910 63 aq 14400
1740 0L INIOd! 28°X1 aay 06910 60 dd s 8400
IN3HLIsaray! €404 an 04910 €000 10 18400
TH dod 0£910 51 + L300
YINd SSRYAAY TIED gAISNVHEL? XI Hsnd 02910 s3 adq 16400
LYv1s 13nt fd d0d :69L1yV 01910 La Vv hidoo

X NY 804 7730 I0¥dS SIHL ISOOHO ! 009t0
JATLYOEIN LON 4I 0D! 09LLHY ‘ON up 06610 2d ot 12400
0 41 obf S9LLuY‘z ur 08610 20 82 + 0400
YILNIOd dHnd! X1 ONI 0LGLO €2 aq +3HOO
LNNOD=# 28*1H 288 09410 Zh ad 12300
RHUVD ¥VITIO! ¥ ¥0 05610 La +€300
08 NI MON! 0‘g a1 onsto 00 90 1 6300
INNOD 130! (E+XI)*D @7 :09L1yV 0EGLO €0 dan agq + 9300

"X NV Ind ol ! 02s6t0
IUHxSZHmo<mw:on2<m<QZHmOPmmmzazmesmm:.mqqmu" c_m—o
.

FIV4S NI INAOD 1TVIOL Ol Tvadd 40 NVHL SSAT ¢ JAVH MON 00SGto0
INNOD 47 ¢ 139! 34 TH qav 064710 61 1 GH00
FATIVOAN TTI1 INNILINOD! 0GLIEV'ON r oghnio g4 0f +E300

370



¥INd duna! TH oNI 06100 £2 1atoo
ANTYA 130t (TH)Y 'Y a1 :6gliuy 08 h00 L 10E00
S3InTvA 8! gd a1 0L 100 80 90 1WE0O
yaav 16Vl FZRTYNY S FLTYNY TH a1 09400 #0000 12 1 LEOO
FZXTYNY HYTYNY 11V 05100 #0000 Q2 +hEOD
$SIYaay Avygyv! LAVEYY ‘XTI a1 0H 100 20000 t2 ad 10€00
INdNI ¥3SA FZXTVNY MON ! 0Eh00
X¥IdsIat SANYDS T1Y0 02h00 #0000 Q2 1a200
0 43sN FHOLS! ¥E(TH) a1 01400 Ll 10200
0! hey a1 :0gLluy 00100 7o JE 1200
NIYDV X4lL! SLlIuy ur 06€00 9@ g1l 18200
§2ds £ xy13at iv13q T7Y0 0g£00 #0000 @D 16200
SOUSITIIN 000E! 000€*TH a1 0LEOOD gago 1e 12200
Iv1dsIat LNooSH TTY2 09€00 0000 @D 13100
YUY FDVSSAN! NIFYOT ' RI a1 0s£00 #0000 L2 a4 (€100
IDYSSEN uNIVYOV XHIu! SOSH*TH an orEon #0000 L2 18100
X1dWE 4I 00! ogLIuv‘z yr 0EL00 2L ge 19100
OH3IZ ¥O0d4 IsdaL! ¥ ¥o 02E00 Le 15100
SINZLNOD 1uD! (TH) ‘v a1 o0LE00 ql i fLoo
LN3NETT 0L INIGd! 28' TH aav 00€00 60 +€£100
AVHYY ONINYOM'® LAVHHEY “TTH a1 06200 80000 12 10L00
O08 NI HON! o‘g a1 08200 00 90 13000
O NI MON! vo a1 0L200 dh +4000
§-0 # 135! 10dNY 1Y 09200 #0000 @0 Y000
rvdsiat LNODSKH 11Y0 05200 #0000 @9 i+ Looo
YIYY JOVSSEN! N3ZYIS ‘KT a1 0h200 #0000 12 a4 1£000
ADYSSEH wIAOW YNORa! hOSH‘TH a1 :GLLLYY 0£200 #0000 L2 10000
XY¥1dSIA ANY INdNI HESN 13D MON ! 02200
ZLOSH dILYY “dTNIVH 1¥3 04200
60SH'QDSH* LDOSH ' 9DSH GOSH HDSH' EOSH 2DSH* LDSH 1xd 00200
414104 ‘dSON‘OON‘XON X3 06L00
FLJON‘MANIY ‘3TGVId STHLXN 'JLSUI ' ONIAOW IXd 0glo0
4IANI¥ LANIY *GLTVNY 1x3 0LL00
GVLIOY ' ZXvHEY  LAVYUY ' XYISIH ‘dLIAON 'dLAIYD 1X3 09100
RIGSYE ‘XHOWAW ‘dNISTH ‘SANYOS 1X3 05100
SVENTE AV TAQ‘LNODSH ‘THYEA SAWdSA HDTTId 1x3 oHio0
INNT‘QuVH ‘YIXHEY ‘ILVIOE "MV IVNY ‘43dnnn 1Xa o0EL00
€LANIT ZHHYOS ‘NITYDS X3 02100 .-
LINIVH VINIVH  ZHLNE 0LL00
WNTYVA ETLIL 00100
anz 08610
AVHEY XVTdSIQ! SaNuos 11V 0L6L0 #0000 @0 1GELD
KVHYY NITUDS OL LAVHHY LUTANOD MON ! 096L0
FIVISNYYL ! YIXHYY 1740 05610 20000 @2 (2810

AVYHY NOILVNIISHQ! LAVHEV FRT (0] 0n6L0 #0000 t2 a4 13210

371



FAOW LSYT 41 09!

0=1H HOd Isai!

¥ 3AvSH

HST¢

ASH Y3INIOd 1dD!
YINd FTEVI FAOW!

SHALSIDIY FAYS!

GROGHRODEENAGABHABRBRERORRDRENORRRRARADBRRNUBERERNRREY

NIM HOJ € ‘MVHQ ¥Od

HO¥Y ¥0J3 SINAOD S1sn

L3
®
[
[3
a
[ ANTLNO
a

LyyLsay!

Xgi Lot

ividsial

YaYY IOVSSIN'
FOVSSAN uwlYIHIONVM!
s0ds £ xv1Ea!d
JHSITIIW 000E!
xnnat

v
060HAN ‘2
1

HY

4V
(XI)*‘1
(L+XI)‘H
G1FAOW XTI
XI

TH

av

404
ur
4o
an

HSnd
aT
a1
an

HSnd

HSNd

HENd

RGN UORGROCONENEENNBRGRONRNNGUERNARTNDEBORNBRRNADOND

GOO0WAN

RHOHIN

¢
‘
¥y 1430X3 QIAYS SYILSIODAY TTV  a!
azisnray $11I0 AVId 111%d et
1 ‘9S0T ¥04 L1-=(V) IEINI 8!
*40¥dS  af
FQY ‘MVHQ HO ‘ESO0T 'NIM HOJ e
HENS AYOWAN .m
8t

413A0H 1xd

AHOWZH  XELINZ

USoW3aW  ATLIL

ang

dILEYV ar

LadNI 11v0

LnoosH T1V0

NITHOS ‘XTI ai

LoSu'H a1

xv13d T1Y0
000E“1TH a1 :E6t1luY
$ abd vENIVH

Huiﬂlta!Hn‘#tﬂtﬁ-!ﬁl‘-lt'mﬂautﬂ‘ﬂaﬂﬂ'ﬂaﬂau‘lnaatctatam

4 LNIO

d RYINI NOILOV UN3

¢
'S4

Bt'lc-Bta't‘l‘BtEnt’uUnﬂBtl.5#Hﬁﬂ'ﬂ.ﬂ.#uutt!*‘aﬂaﬂﬂaﬂnw

$7130 9m=wa<m
[t
RHOLSIH 31vadn!
3g01 ¥Ood T¢
xv1dsiat
YIgY IDVSSIN!
FDYSSAN uNIM NOXu!
FA0M LX3AN HO4 yova!
g8 1Y LON!
so 1TY 41 090!
SO 17V HO4 1SIL!

X OWAR
Had0'y
dNLSTH
Tty
1009sH
NIFYOS ' AT
995H ' TH
dINTYH
GgLLyy
06LIUY 2
A

TTY0

LANIVH

L6LLYY
o6Liuy

02€00
0LEo0
00E00
06200
08200
0L2oe
09200
06200
0he0o
0€200
02200
0LZ200
00e00
06100
08100
0LLO00
0gi00
06100
oORi00
0EL00
0cioo0
oLLo0
0000
0eloo
0tL00
0olLoo
06900
08900
04900
09900
06900
ohgoo
0€900
02900
01900
00900
06400
08500
0L500
059500
06500
08600
0£500
02500
01500
00500

6L

00 39

10 99
#0000 12
sy

#0000
#0000
20000
#0000 L2
#0000
#0000
ggdo

«0000
a4
#0000
on
#0000
#0000 L2
#0000
#0000
84

G0

30

L4

s
oL
S
aq
aa
aa
aa
ok
Gad

€0
as
ad
ad
(%4
al
te

ad
a€
as
qE
as
ag
12
£
ot
ge
ad

€100
+ 1100
10100
+ 4000
13000
+H000
18000
1 1000
12000
+ L1000
+ 0000

13900
18900
18900
+ 1900
11900
13600
18500
18600

1 8500
+ 9500
+ €500
11500
3700
1Y /00
«Lwoo
s R0O
12800
104800
13€00

372



R UERREANEU NG RGNS NDE NN R RN G NR OB RB BN OB OB ARND Y
QIAVS SYILSIDIY TV 3

TLIXY L3
tRYLING 8

FOYSSIW AHOLSTIH J0 SNOILISOd INI¥d g2l S3lvadn #
#

#

&
#
#
]
o
H

HLNd

JAON!

s3aLxg Lzt
NOILVNILSHQ!
I0¥nos*

FYOIS ¢

QN LV FZITVILINIAYE!
aNd LON 4T 0D¢
GN3 HO4 1sdi!
XHHYD HY3T1O!
|+433408 J0 QNE?
FHOLS !

LXAN Ol INTOd®
HLNd AHOLSIH?

SHFLISINAY FAVS!:

Myyga ‘NIM ‘dS07T ¥Od

vl-‘n-!ullt‘“ﬂt'll.“v‘t'ﬂlwtﬂtatt!nlit!ttt'nl-“‘t

SINdSA ELANTT LD

NENLEY !

SYALSINIY I¥OLSIY!
ANNILNOD !

I7EYIMYA JAOM dWna!
INNOD 3HOLS!
LNAGD XyK!
00l L1 dI 0Df
00t 17 BOJ 1S3L!
0 40 INNOD!
AATLISOL &I 0D}
043z 41 09!
INa0s isnpavd

121'od
KYISIH 3q
L+X4LISIH'TH
08¢ {STHIXN)
bk
OLOSIH'ZN
eL: et

¥
g2ZL+XHLISIH DY
TH (STHIXN)
TH
(STHIXN)*H
TH

aa

boL:¢

q3aLvadn ¥Igand
sds 4O “uMafaTaE(Y)

dLyadn X¥OLSIH

SH*ZHISIH SIHLXN
dN1STH
YSLSTH

020HAN ‘I
oot

¥
0LOHEAKR‘d
goouan‘z
(TH)Y 'Y
v

4147
a1
an
an
an

a23a
ur
24s
40
a1
a1
ONI
a1

HSnd

HSNd

Hsnd

x4
XHLNI
4711l
ang
134
d0d
d0d
d0d
dod
gr
40d
ONT
ONI
a1
a1
ar
a2
40X
ar
dr
qav
gsnd

*dNLSIH

i
:
1]
:
1]
]
‘
Il

060WaN

020WAr

01 OWER
800WIH

09€£00
05€00
0hE0D
0EE0O
02€£00
0LE0D
00£00
06200
08200
0L200
09200
06200
0h200
0€200
0zzo0
0Le00
00200
06100
08100
0li00
09100
05100
ontoo
0EL00
02L00
oti00
00100
01500
00%00
06 700
0g 700
0L4h00
09100
05 HOO
0rtoo
0EH00
0eroo
0t ®oo
00100
06£00
0g€00
0LE00
09£00
05£00
0hEOD
0EE00

0g
qL00
#0000
21000

#0000 Ef

ol
an

#0800
#0000

#0000

ad

€z
€2

€9
+ 200
L8]

+QL00
+2100

1 0200
1QL00
svioo
s L100
s£lo0
12100
10100
23000
2 Q000
V000
1 L000
19000
+£000
+ 2000
+ 1000
1 0000

s LE00
1 0£00
1200
1 Qoo
19200
1¥200
16200
+ 1200
+ 6200
1 200
12200
1 d100
+qL00
10100
16100
19100
16100
«HL00

373



HINd 379vIdVAl I dod 05100 td aa 19200

YILNIOd 1STII! X1 dod Ot t00 g aq 16200

# 0L JIVISNVHL! NIgsve 110 0€ 100 #0000 QO 1+ 9200

JLVISNYHL! ¥IXYuy 11V o2roo #0000 Q2 sE2oo

aays! TH HSNd 0L {00 | 12200

SY0IAGNI 40 ISIT: TH d0d 00H00 jact 11200

nant ZXVHYYV ‘KI a1 06€00 #0000 12 d4 s+ Q100

TYNIDIHO! LAVHYY XTI a1 0gE00 #0000 12 da i 6L00

YINd SIOIANIS XTI H8Nd 0LECO sd aa 1 L100

HINd FTHYIYVAS AT HSfd :010L0Y 09€00 Sd a4d 15100

AT ONI 0GE00 €2 a4 1E100

AO6Y OL LNIO&! rI ONI o%€00 €2 a4 11100

HINd SIOTYA FLVION! dYI1L0Y ‘11 a1 0EL00 40000 12 a4 1 Q000

I76Y1 SADIAGNI FLvViou! 6LANTYH “XI a1 02£00 #0000 12 aq 16000

SNOILVLIOY NIAQS! L'g a1 0LE00 L0 90 1 Looo

i1 Hsnd 00£00 s3 ad 15000

XTI HSNd 06200 s3 aaq +£000

TH HSNd 08200 k| 12000

od HSnd 0L2o0 ) +1000

SYILISIDIY HAVS! L HSnd *3lvioy 09200 Sd 10000
‘ 06200
RENGRTEGER UL UL OUUNEOGUNENOROURDRNENOHUNRNDERNROBE 0heoo
3 4@ 1d433XT dIAVS SHALSIHIM TV w! 0E200
# GVIL0Y NI SHENTVA 8 w! 0200
# anIva € ISvE LSETIVHS=(IQ) 2LIXA @t 0L200
# TYNIOTHO SUTOH LAVYHY :ZMINI 0t 00200
u *sd3I¥nEA 0Le ‘ogl ‘06 ‘0 40 w! 06100
s SANTVA HOHYIW ANY SIFUDIQ 0Lz ‘08l ‘06 OI LAVYHVY w! 0gioo
a 40 NOILVYIOY ¥04 $3nTVvA £ ISVE NOILVIOYW SANTJ a: 0Lio0
Y ANILAOHENS FLVLOY w! 09100
BOUULENAAUNDUEROUDLNULGEINEERNEORRBNODUODDEORORRDERBRD ¢ 05100
H1dIoH Ixa ohioo
ZAVYHV  LXVHYY ‘GYILOY ‘6IANTY 1X3 0EL00
NTESYE‘YIX¥YY 1X3 0e2io0
qlvioy FHLNT oLtoo
YSVLOY 3T1IL 00100
anNa 09400

L3y 0500 60 12800

o4 404 ohoo ] 11E00

aa d0d 0Eh0O0 ta s 0E00

SYIISTDIY FHOISIY!® TH 40d 02100 %) 14200

XHOLSIH Xv¥V1dSIQ: SAHdSd TTYD 014t00 #0000 43 40200

¥YIHY XYOLSIH 30 LYvis! E1INIT 08 aT 00700 20000 10 + 6200

FDVSSEH AHOLSIH! LOSH*TH aTl 06£00 #0000 L2 19200

SOLVIS JYOLS! Vi(TIH) an 0gEo0 LL 16200

HIINIOd RYOLSIH! (STHLXN)'TH a1 :0LOSIH 0L€00 #0000 V 12200

374



SYN04 J0 #=E°'SANO 40 #=q!f 0‘3a an

SNOTLISOd ININ? 6'd a1

TH HSNd

aa HSNd

od HSNd
SYILSIDAY FAYS! v HSnd ‘HIEHAN

RRERRERRERRAERAAR AR RN R RS RE RO AR NG R RO ERRER RN RO AR RERRN RS

¢

:
. 3AYS SHALSIOZN 1TV !
» dSON aNY ‘OON ‘XON NI HOV3 J0 HIEGWAON $1IXd %t
® SSIYAAY AVHYV=(TH) :RUINT &t
* “AVHHY Y
* NIAID NI SHIOVdS UNV ‘SO ‘§X 40 HIEGWNN SINNOD At
* INILOOUENS YALAHAN '
m-ltuxn":ttut-n-:laa!-statx**:#!:atat-t-mtmstt-*nttm

dSON‘OON ‘XON LXd
HIAUNN RELN3
YSEHNN JTLIL

ang
NEn13H! 13y
EX} dod
o dod
TH d0d
X1 d0d
SYFILSIHIY FYOoLsaAY! XI d0d
INOQ LON dI d00T¢ 0€010¥ ZNra
XI NI

LXEN OL x3gNIT duna!l X1 NI :pwolLow
AdEL FAVS! XTI ' (4rdroy) a1
987 MEN FH¥OLS! 1'% at
GSN MEN FHOIS! H'G a1
qyolsay! 30 1H aay
a0 LD HO =MAN 4T 0D¥- 0n0LOY “d dr
TYVIHOD ! IATH 8%
ugyo yvaTo! ¥ ¥0
asTt (X1)‘1 ai

gSH AnTVA IS¥IJ 139! (L+XI)‘H a7 :0£0L0¥
InIvA 1SINOTE Haddltaa a7
374yl ALVIOH 40 LHYIS! gVLL0Y ‘XTI a1
030 0 HOd ENO Snd! g'd ai
FYOW 4I 09! oLolod ZNrd
14§ IXEN 0L LNIOd! 90°X1 aay
LNIWIYONT ¢ 6°‘3a an
i1 NI
BINd 3TBYIEVA dunaf X1 ONI
4L SH FHOIS! HY(L+AT) ai

ILig ST 3YOIS! TH(RD) a1

0Lz00
09200
05200
0reoo
0EZ00
gezeoo
01200
00200
06100
08L00
olico
09L00
06100
0®l00
0ELo00
0zLo0
oLLoo
00100
0 L00
o€ Loo
02Loo
011400
00L00
06900
08900
0L900
09300
05900
0%300
0£900
02900
01900
00900
06600
08600
0L500
09500
06500
ORS00
0£600
02600
01500
00400
06100
08 #00
0loo
09 o0

0000
60

La
1q
L3
€2
€z
#0000 22

Y5600
25

00 39
L0 99
dd41L
#0000 L&

33
90
s3
saq
$3
G4

60
|

14
ag
ad
ot
aa
aq
aa
as
hs
61
cd
az
A
aa
aa
[
aa
90

ag
i
ad
ad
a4
ad

+ 3000
+ 1000
s £000
12000
+ 1000
+ 0000

s L900
19900
16900
1300
12900
10900
13600
10600
1¥500
i 9600
16400
i 1600
+ £600
10600
13100
G800
1Y OO
1 Lwoo
1 100
s 0h00
13E00
+2€00
1VEOO
1 LEOO
1 6E00
1 EE0O
10€00
+ Q200

375



BRVBUNERURRERUBNGGNRORBEURRBHUNRNRRRENBBRRTRARUDUAROGG
QRAVS SHILSIOIY TV 3
GLTVNY NI SHALEHVHEVd 3

AVHHY INIWETE-6 4O SSIYAAV=(XI) #
TAVHYY NHEAIOD JO TTYNODVIQ ANV ®

#

[3

2

#*
¥
&
#
#
#
&

‘NHDTOD

L onoyt
11ns34 3401st

0 Moy!
378v] 40 ssIyaav!

SHYLSIDIY FAVS!

NynLEY !

SYFLSI DAY FHOLSIY!
qY40ls!t
IN00D A0YdS 139!
q40Ls ¢
LNOOD O 139¢
JYors ¢
INNOD X 1ao!
6 LON 41 0D!
YINd dWng!

§30Yds 40 # 4dWng!

LON 4T 09*

40¥dS 404 1S3l

LNROD O dung!

ON 4I 0!

&0 NY LI st

INAOD X dHnE!

ON 4I 09!

X RY LI ST!

LNINATE Lapd
$30¥dS 40 #=01

(0+XI) ‘Y
GL YNV ‘XTI
Xz

3y

‘MO HOVE NI SX OGNV SX J0 HIEHON SANIA

AVHYY dZXTYNY

BBORGTHERREUERUERENNBROGRBRRNURBRRBORNBRNBRGUNBUNRUEY

gGLIVNY
gy TYNY
USTYNY

aY
2g

aq

TH

¥ (dSON)
oty

¥ (0ON)
Ity

¥ (xXon)
a‘y

OLOHAN

H

o]
OHOHAN*ZN
v

et
0EOWON ' ZN
[

a
0ZOHN‘ZN
L

(TH) ‘v
0'9

aay
a1
an
aay
aqy
a1
a1
HSNd
HSNd "m<4<zm

T1IX3
PAMLNE

Ixd
RULRE
3TLIL

ana

134

d40d

404

404

404

a1
a1

ONI :OoRrOWON
INT
qr
40 :ofounN
ONT
g
d3 f0Z0oMAaN
ONI
ar
d0
a1 tOoLOWON
aTt

00£00
06200
08200
0Lz00
09200
05200
0heoo
0€200
02200
01200
00200
06L00
08100
04100
09100
05100
ot oo
0ELO00
02100
0L100
00L00
02600
01500
00%00
06100
08100
0LtoC
0900
0500
On K00
0E700
02400
0l too
00%00
06£00
08€00
oLEco
09€00
0500
0HEDO
0EE00
02En0
CLEQO
00€00
06200
08200

h0 98
€0 3L
00 LL
20 98
10 98
00 3l
#0000 12
Ga
#0000
#0000
#0000
34

10

Lo

70

L0

Lo

00

19100
sE100
10100
+@000
1V 000
+ LO0O
+£000
+ 1000
10000

1acoo
10200
19200
1¥200
16200
1+ 9200
16200
12200
11200
13100
»qL00
+ 8100
1V 100
16100
11100
19100
16loo
1 ELOO
1100
40100
13000
12000
14000
16000

376



SYILSI DAY AAVS? av HSNd :VTXHYEY

ARBGNBUCR RGN R BN NRNGRRORRNECERARDARBUBRNUNNRUNRDRIND

» qIAVS SHALSIODIAY TV
# 1SIT XIANI OL ONIQHOD

L =0V AVHEY NOILVNILSIQ 40 SINIWITA OlL

# QALYFTANOD AVHEV JOHNOS JO SINIWITZ tLIXE
® SEOTANI 6 J0 ISIT 0L HAINIOd=(TH)

L} IVHYY NOILVNILSHQ 01 HIINIOL=(XI)

[3 AVHEYV H0HA0S 01 HAINIOL=(XI) TAYING
[} AVHYY QILIVISNVHL
[} QNOJ3S V Ol XAVHHY NIAID INIWITI~6 V SIUTANOD
[3 YOLVISNVUL AVHHY

ARG R RGN IR RGO R AN N RN OR IR AO R RN RN BB OO NEER DY

VAXEYY AYLNE
USXYHY 4711

and
NEALIY ! 134

av dod

SHALSIDAY FYOLSTY! AT dod
110s34 FHOIS! ¥*(L+XI) a1
(9+XI) ‘v aay

, (R¥XT) 'y aav

I TvNoovIQ! (2+XT) v a1
110S34 FHOLS! V'(9+XI) a1
(8+XI) ‘Y aay

] A=+xuv“< aav

0 TYNODYICQ! (0+XI) ‘v a1
1TNS3Y FHOIS! ¥ (S+XI) a1
(8+XI)‘V aay

(G+XT) ‘Y aay

g NHNT00¢ (2+X1)*V a1
L1TNS3Y AYOIS! Ve (h+RI) a1
(L+XT) 'y aav

(n+XI)‘V aay

2 NHNT00¢ (L+XT) ‘v a1
110s3y AUOLS! ¥ (E+RT) an
(9+XI)'V aay

(E+XI)‘V aay

0 nuntoo! (0+XI)‘Y a1
LINSEY 3YOIS! ¥ (2+AI) a1
(g+XI) ‘v aav

(L+xT)'y aay

2 nou! (9+XI) ‘v a1

170S3Y FYOLS® VE(L+RI) a1
(G+XI)‘Y aav

*
#
8
#*
&
#*
L]
@
*
a
&

06200
04200
0€200
02200
oLzo0
00200
06100
08100
oLL00
09100
06100
ohiLoo
0EL0O
0Z1L00
olio0
00L00
00900
06500
08500
04600
09500
06600
0h&00
0EG00
02600
01600
00400
06700
0gnoo
0L %00
09400
05100
0qnoo
0E 100
02700
0L KOO
00400
06€00
08£00
0LE0O
09€£00
0GEQ0
04E00
0EE00
02€00
01€00

Gd

+ 0000

1V 300
16900
1900
171900
+ 1900
+3500
18500
+ BG00
16500
12500
1A 000
+J 100
16100
19000
s E4700
10R/00
1 a€00
VEDOD
1 LEOO
€00
+1€00
13200
18200
+ 8200
16200
12200
1 J100
43100
16100

377



dYdH INIT TVINOZIHOH ! 06200

TYOILUEA 41 09! 090VHQa'ZN ar 08200 Lo o2 + 9000

LsaLt v Ho 0L200 La 16000

oYTd LYIA/ZIYOH 13D° 2y at 09200 6L + 1000

HALOVYVYHD FAVS! AV HSNd 05200 a4 +E000

TH HSnd oteoo sa 12000

aq HSnd 0tzoo &aq +1000

SHALSIDIAY FAVS! od HEAd  :TMVHECA 0zeon %2 10000
‘ 0L200
T T T 00200
# dIAVS SHALSIOIY TV *1IXI 5t 06100
& Q35N 39 01 SNOILISOd ¥ILOVHVYHD 40 #=(d) PR 0gL00
% NOILISOd IHVYLS NITYOS=(TH) sl 0Lio00
8 TVOILYAA 3T CHIAZ-NON ‘TVINOZIYOH AT 0=(0) 8! 09100
13 aisn 39 0l 4ILOVHVHD SDOIHIVHD=(V) FXHLHI 8t 06100
e ANIT TYOILYIA YO TVINOZIHOH SHVHQ wl ori00
L] INILNOHENS ANIT MVHG 8t o0ELo0
IO I ITI 02100
BER2:A) RHLNT 0LL00
ysSMvya I1LIL 001L00
ana 01500

NEnLIY: 13y 00500 60 1¥200

ayv d40d 061700 td 16200

ok:4 404 08100 [ %0] 18200

aq d0d 0L %00 tq 14200

TH 40d 094100 ) 19200

X1 404 051700 13 qa i 200

SHALSIDIY FYOLSIY: i1 d0d of o0 a3 ag 12200

2 XVHHY HOJ NOVIS 1asay! i1 dod 0604HY 0EX00 L3 qa 10200

6 LON 31 3NNILNOD!® 0208YY ZNra 02Z2H00 28 ot 13100

YINd XVHMY 3DHNOS dWng! XI ONT 01100 £z aa 10100

X3IANI XIANI dung: TH ONI 00%00 €2 1€100

AVHYY ONZ NI JHOIS'® v(XT) ant 06€00 00 LL ad 1gLon

dNTIYA L AVHEY L3DF (XI)'v ar 08E00 00 44 ag 16100

XIANI+HING AVHEY 1S3q‘f 3a‘x1 aay 0LECGO 61 ad sELo0

JAYS i1 HSnd 09£00 S8 a4 tL100

MINd NOILVNILSHG! AT dod 0GEOO 12 qa 14000

40 0L XHANT! 0‘a a1 onE00 060 9L 1 Q000

X3ONI LX3AN L¥D?! (TH)‘3 a1 +020HYY 0EE00 as 12000

HINd NOTILVNILS3IQ 3AVS! AT Hsnd 02E00 S3 Qa3 1V000

SIDTANI 6! 6" at 0LE00 60 90 18000

I Hsnd 00£00 S% a4 19000

XI HSnd 06200 S3 aq 1 5000

TH HEnd 0geoo G3 1£000

3a H$nd 0L200 1 12000

o8 Hend 09200 1] 11000

378



YAy Y334NE FDVSSHW!

¥YINd FAYS!?

YALOVYVYHD 3FYOILS!

0 a4 Isnut

q40Is 01 0D ¢

X!

¢ 41 09!

X 404 1S3l!

ANYTIE 4TI 09!

ANVTIE HOJ ISAL!

1NgH3T3 1894
SS3HAAY AYHHY NIFYOSH
SINIMETE 40 ¥IEWAN?
Av¥HY J0 ssdyaav!

SHILSTHAY FAVS!

LdHaL‘ Ty a7

TH HSAd

¥y (LdHIL a1 :81L0y¥3S8

s04 Y a1 :§L0H3S
g10u0S up
Xa 'y a1
S10HDS ‘N ur
L 40
0208052 yr
¥ ¥0

(TH) ‘v a7 f0l0¥0S
XHUYDS ‘IT a1
(1 a1
LAVEEY CTH an
i HSAd
TH HSnd
aq HSAd
bol:4 HSNd

Jav HSNd :SANYDS

[ X2 EE NSRS EXSEERSEE SRS ERR RS RS ESESRSA SRR RSS2 D]

*
"
#
%
#
®

X R XXX EEE SRR SRS SRS SRR RS SEAR R E R R RS

AHYYOS  LXVHHY LAHAL*INOOSH 1xd

Nynlag!

SHALSIDAE FHOLSIY!
JYOH 4T 09!
1X3N 0L INTOd!
SOTIHdVHD FUOLS!
INAHIYONI
YALOVEVHD F¥0LSIY

anoat
FYoW 41 09!
HILNIOd dWng!
SOIRAVYD FHOIS!

¢
:
GIAYS SHAISIOIY 11y 4!
SHILAHVEVYE ON 11IXd !
SHILINYHYd ON :XULNZ %t
AVTdSIG NIFEDS OL LAVHEY SILUZANOD &
AVHHY NITYOS AVI4SIQ .t
ot

SANYDS  XHINT

HSN¥OS  FTLIL

ana

13y

14 d0d

aa dod
TH dod :060Yya

590vHd zZNra

gt aay
¥(TH) a1 :590vHd

ng'ad a1
v d0d 090VHQ
d¥dH INIT TVOTIHAAY

o6ovya jigy

0sovya ZNea

TH ONI
¥OTH) a1 :060vVHQ

4y dod

4YHO FYolsuy!

06€£00
0gfoo
0LEGOD
09€00
0GE00
04EQO
0EED0
02E00
0L£00
0000
06200
08200
0Lzoo
09200
046200
oneoo
0€200
02200
0Leo0
00200
06100
08100
04100
09100
06100
onLgo
0tLoo
0ei00
oti00
00100
05100
0 uGo
0EH0O
DE o0
0L/00
00100
06£00
0BEOO
0LE0OC
09€00
0GE00
oREQo
0DEE0O
02ZE00
01£00
00£00

%0000

#0000
R
14y
85
"0
10
1

#0000 L&
60

#0000

Gd

onoo

80
04

ie
k!

ge
gl
3L
oz
qd
ge
g
Il

90
te
ag
ke |
aa
S0
G4

gt
ot
€2
LL
L3

11200
10200
+QLo0
19100
16100
i LLoo
16100
€100
11100
10100
+ 4000
18000
16000
+ 9000
s H000
€000
12000
1+ 1000
+ 0000

V100
16100
18100
s Lio0
15100
+hi00
€100
D100
14000

+q000
19000
V000
16000
18000

379



ana 06€00

NgALEY! 134 08E00 60 16100

av d0d 0LEDO 14 gloo

o d0d 09£00 ] s LL00

TH 40d 05E£00 Ld 19100

SHALSI DAY FYOLSAY! i1 d0d ‘060DSKH 0HEDOD td a4 1100

GANTLINOD ! 0L0OSK ur 0€E0O td gL 12100

YVHO IX3N Ol LNIO4! T ONT 02E00 €2 s1io0

$0d HVHD IXEN 0L INTIOd! 0€°'R1 aqy oLE0D 60 a4 13000

d0 & Y04 INAWADVTSIA! £9~‘og a1 00E0D L1243 10 42000

ivldsial 230HYT 1Yo 06200 #0000 a@d 16000

aNog 41 09! 0609SK‘2 g 08200 80 g2 s Looo

pASCAR] v HO 0Leo0 Lg + 3000

YALOVYYHD LXIN 130! (TH) 'V a1 *0L0DSKH 09200 al 15000

iT HSNd 06200 S3 a4 1 £000

0 Hsnd Oweoo sa 12000

og Hsnd 0€200 S0 + L0000

S¥3LSI DAY JAays! ay HSNd :LNODSH 0egzo0 Sd 10000
: otz200
OGN UGN O NOUE BN BB O R R NN EN RN BIRBGOGRAORDY 00200
[ JIAVS SHILISIONY 11V 11X w! 06100
# YAYY NIZUOS O1 HALNIOL={XI) wt 0g8i00
8 0 xd @t 0LLO0
# QILVNIWN¥AL OSH ‘IDYSSIH 0L ¥BINIOA=(TH) :XYINT wt 09100
O 1¥yneod I04YT NI IOVSSIW SLAdLNo ' 05100
3 JNILNOH 1NdLNO JOVSSIW IDYV at o100
RO HE RN TR E R U AR BB G RAN RN B B AR AR E U RO BB RSB R B GELOD
DUADHY T 1X3 02100
LooosH rging oLioo
4SODSH FTLIT 00100

qa d40d 05500 ta +1 100

TH d0d 0rS00 (3] s 0hG0

SYILSIDIY FYoLsaY! AT 40d 0EG00 L3 a4 13E00

SHOY¥ £ LON 4T 09° aLo¥as ZNPQ f0HOMDS 02400 La ot 10€00

LHaursaraev agy’ aa ‘i1 aqy 01500 6L a4 1VEOD

LNIHLSArqy: 66t aq a1 :0ft0HOS 00500 4600 L1 1 LEoO

MO¥ MIN LON 3I 09! 0ROUOS ‘ZN gr 06 700 50 02 1GE00

HOM MIN ¥OJ LSAL! 4 42 08 /OO wo 34 1 £E0O

HO¥ M3IN 41 05! 0EQHOS ‘7 e 0L 400 %0 82 1 LE0O

MOY MAN ¥O4 ISIL® A 40 09Rr00 L0 33 14200

LNNOD 1Dt gty a 05100 gl 13200

SSAYAAY NIIYDIS IXEN? 34011 aav onhoo 6L Q4 12200

INIHIYONT ¢ tifga an 0En00 q4000 11 16200

YINd XvVHYY dHOG! 1H INI :020HDS oZnoo 14 18200

YINd FYolsay! TH 404 oLh00 13 + L200

XY 1dSIQ* LOOISH TTY0 0000 40000 @D + 1200

380



HINd NEZHOS dHnd!
YINd INIWZTI dHne!
FYoIS!
SOTHdVYD 13S*
SININETE 13D

NoH Hod!

flunrayg!

SHILSIDHIY Iyorsdy!
KOM WOLLO® FHOLS!
YI1Nd NITHOS OL qav!
isnpray anNIté

o4 dOl IHOIS!
NYILIVd Ol INIOd!
XTHIVH 9 X4 8!

S XTANI !

haXFANT ¢

2aXAANT!

XI 0L 14 g3dSNVHL!
INIWAOVI4SIQ UNIZ!

IHHYO HVETD!
L+LUVLIS FT4V1 HVHO!

TH 0L XI HEJISNVELY
annod LON 4I 0D¢
1X3N 0L dunng!
YILOVEYHD HOd IsdL!
S$SIYGAV ITEVI HILOVYVHO!

SY3LSIDIY FAVS!

GUCRNNGRCRNAERVURARNUNARERDNDUBDNERENENDRUNNRRANANBRDR

[
[3
[3
[3
a NOIIISOd NIJUIS NIAT
[3

#

X1
USIYN
0811
0908
USIVH
08'XI

gVLI0Q‘og
XI'XI
XIXI
XI*XI

XI
TH
28 TH

v

L+gv10 ‘08
TH

XTI
020YYT ZN
XI

(x1)
gYL0‘XI
X1

TH

o€

av

QIAVS SHILSIOIY TTV

NOILISOd N3ZHOS=(ZXI)
ITOSY NI QIy0ls 39 OL ¥YALOVEVHO=(V)

qasn XIHIVH
9 LV HILOVHVHD FOHVT

AVIdSIA HALOVHVHD 30HVT
NENBGHROEO ORGSR RBRROS A RO NN OB RN BN RRARERRRIRDIRUCR

2dDYVT i
HSDHYT a

0L0LVH
a1 ‘HSIVH

aay
aay
aaqy
d0d
HEAd
04s
40
a1
dod
HSNd
ur
ONI
d0 t0COHVT
an
HSNd
HS0d
Hsnd
HENd *0dDY¥VT
i

1lrxa 1]
&

FRHLNG 2
9 39 8 ]
SAYOLS [
2

#

HLNI
TLIL

058500
0hG00
0ES00
02400
01500
00500
06100
0gHoo
0L100
0gH00
05100
Ohhoo
0EK00
02100
0L %00
00 %00
06€00
08£00
0LE00
69€00
06£00
onEoo
0EE0O
02E00
0LE00
00€00
06200
08200
0Lz200
09200
06200
0heoo
0Eg00
02e00
01200
00200
06100
08100
0L100
09100
05100
Owio0
0€L00
peLoo
01100
00100

1V ROO
3

£e

00 38
16100 L2
aq

i Th0o0
12800
+ 2600
1 QE00
sVEDO
18E00
1 LECO
1+ 9€00
1+ GE00
+ hEDD
1 2E00
14200
10200
V200
+ L200
15200
12200
10200
13100
13100
V100
16100
« 1100
19100
1100
12100
+ 0100
+ 3000
13000
s 6000
16000
+£000
12000
11000
1 0000

381



vl 8E 0f &2 19300

0! 9z‘9s'gr‘LEIntEfERe g4 0LLoo 62 €0 £0 91 + L300
£0 €0 £EO L1 €300
d! E'EfEr e ER‘EECER €a 05L00 gz €0 €0 It +dQ00
¥i 0f 0f &2 (Ea00
0! ge'en'grilE IRfEfE 22 :(¢ 06400 62 €0 £0 91t 1 L300
Y€ 60 00 G 1Eqoo
Nt ge‘6‘otieten‘otoEee :{d ohLo0 ¥ 00 #e Ll 14200
¥Z 10 zo Sl V8000
Wi enfietietlnteEigLiLe qaq 0€L00 d2 02 ot 4l +L000
0€ 0f 0f SE + €000
1! gh'gutgn‘Es‘olo‘oie aa 0200 00 00 00 St 14900
ke €0 £0 Lt 1 EH00
3¢ gErEErEe9teE‘oftLe a4q 01100 90 02 00 &t + 1800
8E 0€ Of nt 1£600
rt 9G‘gn‘grtes‘En‘o‘oto aa 00L00 g2 00 00 00 +JdY00
00 SE VE 00 18V 00
T! 0‘ES‘gG 0 0‘E2 ER‘D :{4 06900 00 LI g2 00 1 LV00
g2 €0 £0 [t {EV0O
B! En‘ElEfEztentoroLe aa 08900 ¥Z 00 00 &t 13600
g8 0f 0€ SE 16600
bH 65'gn'gR‘EStLLE E ER g4 0L900 g0 €0 €0 AL 1 L600
Lo €0 £0 Ll +€600
¢ LfE‘E‘Eerereteree a4q 09900 €0 €0 €0 LI + 3800
0f EE £E LE +€800
at griisileissieiEeieR ga 05900 €0 €0 €0 L1 1 L800
¥i 0f 0f &F 1£800
at gzignighiEstIgrEiEr g ga 04900 62 £0 £0 LI 13100
g€ 0f 0E &f 18400
ot 95‘gh‘gr ES LI ECE ER : (¢l 0£900 g0 €0 €0 LI v 1200
g€ €€ EE LE 1 EL00
at 6cflsiigrssteEn‘ErEr€e aa 02900 g2 €0 €0 Lt 13900
g2 €0 £0 Ll 18900
v En‘efeieelEntEtEiEe aa :gvllod 01900 gz €0 €0 Lt + 1900
KVT14STA ¥0d SIVIHIVW 40 FT1gVI ¢ 00900

12 Jag 16900
ge 02 VS 66 1900
86 LS 94 &6 1as00
G €S 24 1S 16500
0S 4t 3 Qh 16500

Oy g ¥4 64 11500

8h Lt 9h Gy +d 100

1 e ZXXAANISYDAONWTHLIHOIZQOEY, qa YL 06500 th € 2 Ly 161700
SHILOVHYHO FTHVHOTIV J0 3T8¥L ¢ 0gso00

Nyn13Y! 13y 0L400 60 +8 100

MOM JYIINZ LON 4T 0D OLOLYW ZNra 09400 24 01 + 94100

382



YIINIOd NIIHOS dWng! jelcs ONI 08200 €0 + 8000

HILOVYYHO FHOLS! vi(og) a7 6L200 20 + L00O

gN0a 4T Nynimy! olodsa‘z ue 09200 50 82 15000

0 ¥od4 LSHL! ¥ 40 05200 Lg + 1000

UALOVHEYHD HDVSSAW 139! (TH) ‘¥ a1 :500dSd 0h200 A 1 €000

TH HsSnd 0€200 63 12000

L4 HSnd 02200 £} 11000

SYILSINAY FAVS! ¥ HSNd :5ANdSa [(%A0] Gd 10000
¢ 00200
RN R RN NN TR NN RN RN NN RN RN RGN N R RN NN NRR 06100
. *QIAVS SHALSIONAY T1V w! 08100
» NOILISOd N3IF¥IS=(0d) %! 0LL00
® NOILVDOT DYSSAN=(TH) :XHLNE .t 09100
* *(043Z) TI0N NO SELYNIW st 05100
»  -HIL 'NOILISOd NIIYDS NIAID IV IDVSSIW SAVIISIA 2! otLos
0 ANIEINOHENS N NOILIYOO0T IV 3DVSSAW AVIASIQ w! 0£100
-‘:‘t‘l-tt.n’-t-l‘-lltlltttttnua-tlttt#-tlttt-tl-t--m 0eL00
SIWASA  AHLNI 0L100
YSHASQ ITLIL 00100
ang 01600

00 LL 22 00 1E610

it o*LLéwEf0‘otLeten‘o aa 00600 00 &1 ye 00 Ao

00 LL 22 00 ¥:4a%]

A 0‘LL hE‘B 651G GE L aa 06800 g€ €€ €2 Lo v Luto

£0 €0 £0 E0 1ERLO

-t EfEE‘E‘DfO D0 aa 08800 00 00 00 00 s dEL0

00 00 00 00 +EELO

3oyds! o‘o‘o‘o‘o‘o‘o‘o qa 0L800 00 00 00 00 1 LELO

0€ 0f €€ OF 1EELD

z! gnfgr*16 09 GL LG EE aa 09800 40 €€ €0 €0 1 d2Lo

€0 Ll €@z €0 (€210

Xt gfegzfEn‘efen‘o‘o’ie aa 05800 ¥2 00 00 St L2LD

we €0 £0 @i 1 €210

X! geEfE'enetotanten‘s aa 0hg00 90 0E 0F 60 2 dLLO

Y1 GE VE S2 R: RN

m: ogz*ta‘gstiEten‘ogtontie =0 0£800 ¥Z i g2 &t cLito

10 8L he 20 €110

At Lfwetotzen‘o‘ottie ga 02800 ¥Z 00 00 §! 13010

Y€ 0F 0E SE 1 €010

nt gsfan‘gr‘es‘en‘o‘ofte Ll 0L800 ¥Z 00 00 Gt 1 1010

00 SL vz 00 1E0LO

Lt ofteten‘ofErEetER‘E :(d 00800 €0 LL €2 €0 12400

g€ £€ EE €€ 8400

st 6sfisfLstigerErEtEe aa 06 L00 €0 €0 €0 L1 1 L300

sz £0 £0 Ll +E£400
gt LEEfE ER ERE E ER qa 08 .00 g2 €0 €0 L1 14300

383



w SES99 OL 0 WOMJ YIEHAN WOANVY-0QNISd V SELVHINZD al

] INILAOH YIGHAN WOANYH wt
BB EEENEEa OO ROIARG U ERDIEN OO NN BRI REORRRRR N
azas 1xd

aNvy AYLNE
HSaNVy ATLIL

anz
13y
boL:4 dod
SYALSI DAY FUOLSHY ! TH dod
xvaat xvnaa 110
AV1dQ 0ASITIIN 00t} cop_mm a7 :0204NI
X3y ¢ Hod! gy a1
INON 4T 09! 200dNI ‘2 qp
XING X3 w8u L3D! 1 any
S MO¥ qYVOHREAN! (HOZBE) 'V a7 10L0dNI
i H 0Z0dNT Hp
v 0d 1Nn0o ! o
XYUYD LON 41 0D! GOO0dNI ‘ON ar
100 LJIHS! youy
LNOOD dHng! 2 ONI :S00dNT
INNOD NWATOO! H440'D a1
NON 41 09! 0LOdNI‘Z ur
oH3IZ~NON ¥04 IS3L! ¥ ¥0
b MOY q¥vodxdAN! (Ho1g€) ‘Y a1 *200dNT
TH Hsnd
SYILSIONIY FAVS! od HSAd  fLNdNI

GO OUBUR DS EURE O RO RN RN N AR RO ERGAN RN NRANONG
] q3aAvsS VvV LdIOXE SUILSIOIY TV [}
3 KUVNIE NI 9 MO ‘L 9'S*pfE‘2'L'0=(y) :1IX3 [
# SHILINVHYE ON :XYLINT #»
@ "SSAHd AIM Y04 SIIVA °*SUIHIO T1V SAYONDI "SXIN @ ]
@ HO ‘Lf9fG'p'E'ZCL'0 40 LOJNI ¥OJ QUVOHXIY SNVOS #
# ANILNOHENS INANT 3
RN OEAGERE RN RO O BN ARG O R ARG ORO RN IR U RN BN RN BRI

Av¥13d 1X3

LodNI AHLNE

HSNINT 4TLIL

ang
NgnLay L3y
Y 404
og dod

SYILSIOIY FHOLSIY! TH dod :0l0d4sQ
AANTLNOD ¢ $00dsda ue
UALNIOd FDVYSSIH dHAg! TH ONI

05100
onLoo
0ELOO
02L00
0LL00
00100
0g 4500
0L %00
0oro0
06£00
08E00
0lLEOOD
09€00
0S€£00
onEOD
0EE0O
02E00
01€00
00£00
06200
08200
0L200
09200
05200
0neoo
0fco0
0geo0
01200
ooeoo
06100
08100
0LL0O
09100
0sL00
ofioo
CELOO
ozLoo
01100
00100
05£00
07E00
0EE00
ozE00
0LE00
00E00
06200

20000
900
80

va

Lo
028t
60

0d
44
60
o0tge

60
td
[3¢]
Lg
gt
€e

12200
11200
10200
1qLoo
Y100
18100
19100
1100
sbioo
14000
13000
13000
18000
1000
18000
19000
16000
12000
11000
10000

+J000
+3000
+qoo0
10000
1¥000
16000

384



gn

Q3Is LOoVHIANS

YSENIE  FTLIL

and

NEnIAY! L3y

SYUILSIDIY FHOLSHY! og d0d

I33S-TYNIDIHO MON! H 34 &t

XD ANV S31XE & SH LOovylens! 28°1H a€gs

SILXE 2 SW 13D (a3aEs)‘og a1

SILIE 2 SH 139¢ TH 3q X3

SILXE 2 ST Lovelrans! LR T 24§

HHYD 1ds3y! ¥ ¥O

dLXg $7 190! (2+a3ds) ‘od a1

SYILSI DAY FAVS! o8 HSnd
INILnoNdEns

NunLgy! L3y

ZeTYNIOIHO HON! TR ‘3q &

S$ILAE 2 SH LJAIHS! TH*TH aqy

31X9 SH 139! TH'EQ X3

T8 LAIHS! TH'TH aqy

ANTINOHENS

NgnIaY ! Lay

v 404

k{4 d0d

SHILSIDAY FWOISAY! TH d0d

08 NI MON! H'D a1

g NI MON! ‘g a1

TH (2+q3dS) an

SI 2+@33s 39 (TNOHS SSIUAAY aAv0'T YIATGHIASSY

fLATH
LJIIHS

1q3as

S

S

I

¢

"HATGNASSY d0°
SNOISHIA IHOS NI HOHUZ HHEQVOT ITEISSOd weaseONINUVMowoua '

aq3ds MEN FHOlS! 3a‘(aqaas) a1
G21¢0335=08356£~82 120335 ¢ 0Z0WaY ZNra
INO LovHigns! q08 T1YD :020Ha
10vy¥ldns yo4' £'d an
82leaaas! 0LoWaY ZNra
1447 1Ig 3NO IJIHS! LATHS TTIYD :0L0HWd
§21 X€ XT4ILTON HOJ INNOD! Ltg a1
(2+d3ds) ‘14 a1
a3gs 13n! (a33s)‘aq at
TH Hsad
3a Hsad
SYILSINAY FAVS! Y Hsnd TNV
n.-"ut-aala'ln-.tttt--tat-!t‘l--“-luutﬂtu-ltutl-‘
u 08 1430¥3 dIAVS SHELSIDAM TV &
@ SEGG9~0 # HOQNVHE=(DE) *1IXZ &

[3 SHALIWVEVL ON

PXHINT L3

-4

¢

. em e rm em

00L00
00900
06500
08500
0Ls00
09500
05500
07500
0£500
02500
01500
00500
06700
08400
0Lt00
0900
05400
Orto0
0EN00
02400
0L400
00100
06£00
08E00
0LEOD
09£00
0SE00
ox€oo
0EE00
02£00
oLE00
00£00
06200
0geoo
0L200
09200
05200
onzoo
0€200
0ezZoo
oLZo0
00200
0600
0glLo0
oLioo
03100

[
#0000 94

ch

¢2000 g

V9

#2000

80000 €5
g4

18200

€0

g4

16200

Lo

#2000
#0000 45

60
]
a3
[ec
adg
ad
aa
Lg
[e3c
G3

60
a3
ag
g3
62

60
ta
La
1%¢)

Eh
ez

+3£00
19€00
iVEoO
+8E00
+hE00
1EE00
1 LEDOD
+0€00
10200
16200

i¥eoo

1 L2200
19200
15200

1 h200
1E200
12200
s 1200
10200
14100
13100

18100
19100
1E100
11100
14000
10000
1¥000
1 L00O
1E000
+ 2000
1000
1+ 0000

385



R URREERGERGR BN RN B NGR DR RRN NGB NBRANBRORUERIOERARE

Q3IAVS SHILSIDIE 1TV

'
‘
] et
N QANDISND ‘HIGHAN XYVNIE=(TH) PLIXA e
1 0 AMINT XVHHV Ol HIINIO4=(XI) :XHINI a°
° INTTIVAIADA AYVNIE OL HIAGWAN £ ISVE V SIHIANOD of
% NOISHAANOD RHVNIE OL E 3sve .t
alll.‘tulnc.ﬂ-nﬁl-ututslst‘-B-t‘lt‘-'ttntt'c‘t‘lltstmu

NIHSYE RYINZ

ysasve ITLIL

ana

NYDLAY! At

v dod

o€ d0d

TH d0d

SUFLSTHAY FYorsay! X1 d0d

SAWIL 6 LON 4I 00! 020NTE ZNPa

boL:4 d0d

1071S AVMHY LX3AN OL INIOd! XI 284
YAGNIVRAY FAVS! 24 (XT) a1 :0EONIH

t Ol FONVHO-SIR! [ ] at

ON 4I 09! OEONIE*2ZN yr

¢g ¥ LI ST! 2 42

HAANIYHIY ! o'y a1

€ Xdg FaIAIC! IqIAIQ 17V0
Fayst 14 HSNd :02ONIE

SIIDIG £ ISVE 40 HIEHAN! 6'g a1

¥OSIAICQ! [ a1

1018 AVHUY LSVT 01 INIOd! 28 °XI aay

INAWIOV1dSIq? 8'od a1

X1 HSnd

H HSnd

od Hsnd
SHILSIHIY FAYS! v HSNd :SVHENI

HEEDRDONCANNENNENBODORNDRRHRRNGURRRARORRRURRORARDOBTG
JIAVS SHILSIDIY TV

L]
1]
L]
a
o
L]
L]
&

(B)AVHYY 0] (O)XVHYY NI HIEHAN tLIXE
0 XMINE XVHYY OL HIINIOd=(XI)

YIEWON XYVNIG=(TH) :X4INZ

I4IAIQ
SVENIg

"INTTIVALINDE

€ dSVYE Ol HIGHWON XYVNIE JLXE~OML V SIHIANOD
NOISHIANOD € 3SVE OL XYVNIE
GHONOORGCOCNNNOREORRUNONUAGNOBRONBREADUDOUSRGDRONDDRY

1Xxd
KHINZ

B
8
[}
a8
&
&
&
L

06100
081L00
0Li00
09100
06100
ontioo
o0ELo0
02L00
01100
00100
09100
05100
ong00
0ER0O
0Z2/00
oLy00
00400
06£00
0gEoo
0LEDO
09£00
046€00
o4EQO
0£E00
02£00
0LE0D
00£00
06200
08200
olLeoo
09200
05200
0hreoo
0£200
02200
oleoo
00200
06L00
08100
glioo
09100
06100
oRLOO
0€L00
QzLoo
0LLO0

19200
16200
s heoo
18200
11200
14100
+JL00
10100
16100
s Lioo
16100
E100
12100
+ 1000
+3000
42000
V000
+ 8000
16000
s£000
12000
11000
10000

386



LNNOD NOILVHALI 9l‘g a1

i
¢

3@ NT HOSIAIQ o'‘a an
TH oyaz! 0*TH al
XI dod
XI 0l ONIAIAIQ! H Hsnd
XT Hsnd

SYILSIDAY FAVS! 3a HSNd :3QIAId

LRy YR T )
08 'IH 1430X3 QIAVS SHUILSIOAY 1TV

¢

¢
] et
. YAGNIVHIY = (08) %!
. INBTLOND=(TH) t1IX3 2!
. HOSTAIQ=(d) w!
. ANIAIATIQ=(TH) RHINE  w!
. "HOSIAIQ  af
» 1I8-8 X€ SILIE 9 40 FATIAIG QINDISNA NV SHHOJHAd  #f
. ANTLAOYENS 3dIAIQ st
SRBARERFRETRED S -“u.at‘.'-nul‘-tu‘tt.t-‘n..ntttt‘tltu

daIAICd AYiINa
YSTIAIC a7iTL

ans
NHAZFH ! 134
4y dod
o8 d0d
ad d0d
SYILSTIHAY HYolsau! i d0d
6 ION 4I 0D ozosve ZNra
10718 1X3N 0l INIod! i NI :0hOSVE
ILA€E SH dWng! H ONI
AHYYD ON dI 05¢ OHOSVE‘ON ur
TH NI MON v an
FOHIH! Ty aay :ofosve
€ ISVE Ol AOVE-SIX! 2'y a1
ON 4I 09! 0E0SVEZN qe
if v LI §I¢ f d3
LIDIQ £ ASYE LXEN 1ED! (RT)‘Y a1
€x1I0S3Y ¢ 30414 aay
Z2alINSHH ! 44 *1H aav
3q d04d
30 0L 1InS3¥ HIISNVHL! TH HSNd :020SVE
LNROD d007T¢ 6'd al
LIASEE HvET ! 0 TH a1
13 Hsnd
aq HSnd
39 HSnd

SHILSTHIY FAVS! av HSNd :NIgSYE

06200
08200
0Lz2o0
09200
05200
0h200
0£200
02200
0tzo0
00200
c6i00
08100
oLioo
09100
05100
onioo
0€100
oeLoo
0L1L00
00100
05400
0ntoo
0ENOO
02100
0L noo
0000
06E00
0gE00
0LEQO
09€00
0SEQO
04€00
OEEOD
02E00
0tE00
00E00
06200
08200
oLzoo
09200
05200
oheoo
0€200
02eoo
01200
00200

[
vd
€2

20
20
L{Y]
00 44

60
0000
63

3}
Ld
[ 39]
La

ot
ad

0E
a9
S8
4€
02
a4
a4g
61
61
Lq
SH

%4
ad

&0
Sd

+€000
+ 6000
+ 9000
+ 1000
€000
11000
+ 0000

1 G200
+hEQO
1 €200
12200
+ 0200
13100
13100
14100
16100
18100
s Lioo
16100
€100
11100
13000
+ Q000
13000
+ €000
V000
+ 8000
G000
€000
12000
+ 1000
+ 0000

387



]
HOEGHOHNHBBRGNBADRUNCRENBUNBRERBRUBNOEUGHRUBDUNBURHBBUTDE -

NgaL3Iyt

SHILSIDAY HYOLSIY!
INNTLNOD !
IND 00T HILNO INIWI¥OHIQ!
xv13aq Hod d00T!
LNROD d0O0T YINNI!
uwON dPu HOJ4 LSOpay!
INAWI YOI 404 L=}

SYILSINDIY FAyS!

iE 222X RRERRRS AR RS RERERERERRESRSEERERE XS]

HOTTId
HS17I4

od:

aq

TH
0107300
3a* M
02073d
LEL'g
TH
[ {d
TH

ad

od

AHLNT
4TLIL

[efc
13y
d0d
404
d0d
dr
aav
ZNrg
an
Jadq
a1
HSNd
HESNd
HSnd

0201730
$01L073Q

TAy1ad

¢
:
o GIAYS SYILSIDIY TV o
[ 9€569=0 8t
a SANODISITTIIN NI INNOD AVTIA=(TH) TXAHINT i
s *SQNOJISITIIN 9ESSY 01 L SAV1Iq 4!
a ANILNO¥ENS AvVTIQ wt
tautsautlsmsat‘aa'utnnantsnaasctaunssncta.a-uan-mnaucu

VT34 XHINT

§¥Sv13Q 3TLIL

ani

NEnLIY ! 134

4a d04d

SYFLSIDIY FHOLSHY! XTI d40d

TH 404

LNIILOND! XI Hsnd

ad d0d

YIANIYWIY ! H HSNd
SNOILVHELI 9i LON JI 00¢ o10ALd ZNPQ :0E0AIG

119 b 13say! XI nad

JyoLsAY ¢ 904 aay

IN3N HATAIAQ 41 09! 0EOATQ‘ON yr

LOVHLIENS Xyl a4 2€s

IUYD HYaIo! v ¥0
118 O 13st X1 ONI :080A1Q

SLIE SH 91 O ZHy¥vd? TH ONI

XMHYD ON 4T 09! 020AIQ'ON ye

§1Id 871 9t LJIHS! XI‘X1 aay
SLTE SH 91 LJIHS! TH*TH aay :0lL0AId

geion
01100
00100
0EEOO
02£00
0LE00
o0go0
06200
08200
0L2o00
09200
05200
0neoo
0€200
02200
oLzoo
00200
06100
0gi00
oLioo
09100
05100
onLo0
0EL00
02100
01100
00100
0800
0Lu0o
09400
05100
0n k00
0E 700
02400
A%
00 %00
06€£00
08E00
0LEDD
09€00
06E£00
0REQOD
0£E00
02€00
0LEOO
00E00

s 4000

a4
€8

d444

s3
a3
g2

€0
24

€2

10
62

12100
siloo
10100
1000
12000
14000
16000
1L000
19000
+£000
12000
11000
10000

1 L200
19200
1 1200
1£200
11200
10200
4100
14100
+€100
V100
18100
19100
1 G100
1E100
12i00
10loo
13000
13000

388



+ SAHYD

821 LSYT *XYOISIH '

qa

aq

1108

SADYSSIW WIALSKS

dnepaRonaRANENORRGRARREUBRNBNBANNDRAORNRORNDBNGARDNORY
$3149Y1L ‘SITEVIHVA ‘SIODYSSHW WAISKS
thannGRUOBRBARRDNEGRODNOBRRGERNRRRRRADRBNNBRRNUBNIDRBDRGY

6LANIY"

HOYLIS'ATEYId 'HIANTY
LANIY'alaT¥d9* LdHAL dSON'OON *XON ' ONIAON
HLIAOH ‘414108 ‘BLJON‘HVLIIOH LAON ' 0GON
2OON* 100N ' 0DON'2HON® LYON OUONGLTVNY
MANTH 'QIIS ZAVHUY * LAVHUY *STHIXN*J154d
ZIOSH LIOSH OLOSH  6DSKH ‘8OSH * LOSH ' 9OSH
GOSH'HOSNEOSH'2HSH ' AUISTIH  LDOSKH

WELISKS

Nyar3Iy!
vV 3yoisay! av
IANTILINOD! HOT1Id
YVHD 11114 F¥olsay! v
anNoag 41 09! 0L01Id°Z
ol
o043z ¥od Is3r! a‘y
YILOVHVHO 1114 3AYS! av
LNNOD ININIHDIG! od
YALNIOd dWng! 3q
YALOVEVHD 111d!¢ v'(za)

AYINg
XHINT
AYLNG
XginNa
A¥ING
L 08kt
AHINE
3T1TL

and

13H

*

- em e be am e

dod 010714

qgr
dod
yr
40
an
HSAd
Jaa
ONT

a7 fHITTII

LR R Y R N N YR T YY]
3009 1430X3 QIAVS SHILSIDIY TV

T o e asa

9£659=0 !GESG9-1 ‘SALAE 30 YAGHAN=(D2€E)
vayv=(aq)
HELOVUVHO=(V)

FRULNE

YILOVHVHD NIAID HIIM VIMV QILVYNOISIQ S$T1Ia

INTLACHHENS HALOVHVHO 1714

L]
&
&
E]
#
#*

06200

0heoo
0€Z00
02200
0teoo
00200
06100
08100
0LL0OC
09100
0Gtoo
ofloo
0€L00
02100
0it00
0o0Lo0
02gtoo
0LE00
00€00
06200
0gzo0
0ktzoo
09200
05200
oyeoo
0Ecoo
0zeoo
oLzoo
00200
06100
0gi00
0LLOO
09100
05100
onioo
0€L00

oe
€6
Ly
LE
Ly

€S
0z
0e
[k

0e

oz
Sh
0z
02
an
2s
64
oz
114
e

oe

G4
€0

+8200
18200
1200
10200
13100
18100
s 1100
10100
12000
18000
s HOGO
10000

+0000
16000
+ 6000
18000
19000
15000
+ #1000
+£000
12000
11000
10000

389



0y INO  LIVM

0°: F0L-0VI-DIL
INIT 834 SHILOVUVHO €1

s 8a

' aq

LEDSH

1 29SH

*S4DYSSAN do¥y !

0 ada

s : 4

tAULSIH

0LE00

00E00
06200
08200

0L200

09200

0z
Ly

Sh
En
£n

0e

0e
(174

0e
14
0e
oz
(134
oe

0e
0e
114
0e
02
gz
oc
0z

oe
0e

oe
oz

oeg
02
ok
02
oe

0e
0z

02

Sh
LS
an

34
64

an
wa
0e
60
L
"G
L

174
02
02
oe

L
64
14
0z
az
ae
o2

1+ Laoo
1 £Q00
14000
1 @000
6000
16000
+ 1000

400200
10800
18400
L RE00
+ 0900
10V00
18Y00
s Y00
s0Y00
13600
18600
+ 1600
10600
10800
18800
s 1800
+ 0800
13400
18 Loo
s hL00
10400
13900
18900
+ 1900
10900
10600
1 8500
+ 1500
10600
+ 2700
184700
L hoo
1000
+3€00
JHEOD
s LEoo
+EE00
14200

390



SIOIANI OL ¥HINIOJ®

qa3s # WOANVH !

# oaromnt

¥3JINE AYVHOIWIL!

$30Yds 40 yIEHAN!

SO 40 yIgHAN!

SX 40 HIEWNN!

HOTLVLIOY LNIH¥ND Ol SINIOd!
SITYLNT €1 NOTIYINWHAL HIGWON!

SINIT RHOLSIH 0l HILNIOL!
LON=14aNIL LS¥IJ=0!

‘

0

HEL9G"HuEEL

L=X¥LST

JqION0D T
0
0.

invHaa

INIM T

LIYOW FNO

iNIN  NnOoX

NIVOV ZHL

dAGH ¥NOX

oOToOOoCTUOOO

HE  TMONTH
#g  :qQaEs
40 :ON3AON
BQ :1dHAL
g0 :dSON
gq 100N
4a XON
AQ :41d10Y
MO 13LIJON
NG :STHLXN
BG  t4ISH4
‘
satavIgya !
:

g0 :ZL9SH
g0 :LLOSH
40 :01OSW
80 :6DSH
g0 i8OSH
80 i LOSH
40 :998W
g0 :SDSH
g0 :HOSK

05500
08500
0ES00
02500
01500
00600
06 %00
0g oo
0L%00
09500
054100
0rt00
0EH0O
02ro0
oinoo

oonoo
06€£00
08£00

0LEOO

09to0

05£00

0nE0O

0EE00

02E00

02
Eq
0z

0
LS
oz

oe
6
6n

0z
ah
an

0z
LS
an

[+X4
Lh
2s

02
at
L

0000
8L9% ezt
00

0000

00

00

00

0000
0000
+JE00

00

00 0¢

Sh hh Gk
In A En
6 02 02
00 de

00 0e

00 02

g 02 e
Ly 29 ty
02 02 02
00 02

02 L2 3u
1S 02 oz
02 02 oz
00 o0e

dE Gy 2§
aw 02 &n
d% 02 0¢
00 02

tg an 6w
02 02 9%
65 @z o2
00 02

I 6 Lk
th 02 6%
6 02 02
00 02

Gf 9§ dn
02 2% S§§
66 02 0¢
00 02

s hGLo
10610
14800
1 ahio
ol
18H10
sy Rto
[R:R 450
9o
yhhlo
iEnio

R
1 QELO
16EL0
+GELO
+EELO
sLELD
+ 3210
18210
ileto
€210
ile2io
QL0
16110
1Sito
1ELLo
1 40L0
19010
cloto
16010
1010
+ Q400
+ 6400
1 L300
«£400
14300
1 €300
1 6300
16300
L300
1 4qoo
+ 8000

391



aIyn d0r-O0V1-3IL SINIJIQ

HOLYNINYZL!

SHINd hE*Z'L FAOM®
F79VL HAOM!

SHOMHIW y+olz‘ogi’o6'o!
378VLI NOILVIOY®
L TYNopvIa!

0 vNOOVIQ!

2 NHNT0D*

L NHRT00!

0 NWNT00¢

2 Moy

L Moy!

o Hou!

7aV1 SISKTYNY!
2 Rvuuy!

L RvHYY!

LE+26L+HOODE
6*1‘HAEO
92+261L+H000E
6°1HAH0
S1+261+HOO0OE
6'1Hddo
an+g8eL+HOO0DE
LiLtHOE0
LE+BEL+HO0DE
L4LfHDE0
92+ge1+H000E
L1 HodO
GL+8EL+HOODE
141 ‘Hod0
SL+ROL+HOOOE
hE'O‘HOB
SL+ZLG+HO0OE
HE‘O'HOB
SL+0ZE+HOO0OE
REfO‘HDQ
GL+g2ZL+HO0DE
HE‘OHOR

0

0

0f0‘0'0
0

0'0'0%0‘0'0‘0"

0
0
0
0
V]
0
0
0
0
0
0
[
6

Sq *4IdIYD

*d74vL qIgo !

na

na
§4 *dLEAOH

ha

SQ *HVILOY
8a f1QON
aa *0UON
a4 200N
qq $100N
ga 000N
ga TZHON
€a TLEON
4a QHON
§Q *gLTYNV
SA *Z2AVHEY
§a .—><mm&

SAVHMV QNV s3I€vI !

0L600
09600
05600
04600
0€600
02600
01600
00600
06800
08800
0,800
098060
05800
0kg00
0Egoo
02800
oLgoo
00800
06 L0O
08 .00
0LLOO
09.00
05L00
onloo
0ELOO

02.L00
0L L00

00L00
06900
08900
0L900
09900
05900
0hg900
0£900
02900
01900
00900
06500
08500
0L500
09500

44

2e

(24

Ze

0000
00600

0000
0000
0000
go00

Gd0¢€
10 ag
¥aoe
Lo 4d
400€
L0 J4€
0€0E
Lo 09
GYo€E
L0 089
¥60¢
L0 08
480€
L0 08
40d¢E
00 28
J03€
00 08
dhaE
00 08
480¢€
00 08¢

0000
0000
0000

0000
0000
0000
0000

00
0o
0o
00
00

00
o34]

1 d910
13410
[ 4:4%¢;
y LHLO
164910
12910
10810
1avio
R:42%Y
18V 10
s9VLED
EVLO
sivio
14610
11610
16610
1 4610
1610
12610
14810
1agLo
sVgLo
1¥eLo

+8810
(R4 A%
10810
1081L0
e rAY]
i8Li0
R AS
s0L10
+0LLO
4910
13910
1Q9io
13910
18910
1910
16910
18910
18910
1dGLo
19610

392



glE‘O‘L LT SR aa oLzLo L0 80 G0 20 13E20

00 1QE20

10 20 €0 O 16E20

ofifzienstoflg 4a 002to S0 90 LO g0 15E20

20 yqE20

S0 80 L0 O 10E20

2'sgt L N L0'E" Y :{ 06110 L0 00 €0 90 102820

80 182820

L0 90 S0 w0, LEZ20

ASUIANTY g'L'9's'nE‘2‘i‘o g0 :HIONIH  08LLO €0 20 10 00 (€220

00 12220

£0 90 L0 %0 13120

0L2 HOUMIW! O‘E‘9*L‘nillEs‘y aa 0LLLo L0 20 SO go V120

20 46120

L0 00 G0 HO  .SL20

081 HOHMIW! 2°Lf0*'G*hn‘E‘g‘L9g : (¢} 09it0 £0 80 L0 90 iligo

80  .0120

G0 20 L0 HO 10020

06 HOMHIW! 8‘S'2‘L'w't‘9‘E‘o aa 0stLio L0 90 €0 00 18020

90. . Loz2o

L0 80 €0 %0 1€020

030 0 YOMHIW'! 9'L'g‘E'n*cio‘i'e fafed onttLo 60 00 10 20 4410

20 v3410

50 80 L0 %o WVaL0

oLzt 2'SsfgtLintllofEy aa 0ELLO L0 00 EO 90 4 9dl0

00 4Gdi0

10 20 E0 w0 41410

081! O0ftfEfEfn'GigtLtg aa ' 02110 50 90 L0 80 +@daLo

90 10810

€0 00 L0 1O 18310

0dd 06! g'tloflintitgtetz gq :61aNIH oLLLO L0 80 S0 20 v h3L0

80 1EFLO

L0 90 S0 40 +3aL0

Q@ 0! 8*l'9's'niEfa‘io 80 (IONIH  00L10 €0 20 L0 00 VEaL0
SNOILVIONM ¥O0d SHIIAONI SGTOH "3TgVI SIITANI FIvioy ! 06010

H440 €a 08010 EE! 1vaio

g+ HOL+HOODE na 0L010 043E 18010

141 Hdg aa 09010 L0 L0 48 16a1L0

LE+HOL+HOODE Ha 05010 5a3€ JEQL0

L1 Hag aa o010 10 L0 48 10ato

92+ H0L+HOODE na 0E0LO vaae 13910

L1 HAg :{4 02010 10 10 48 1E310

SL+HOL+HOOOE na 0Lo10 403¢€ 16010

LELHag ga 00010 L0 L0 48 19010

8H+26L+HO0DE na 06600 040€ 1010

6'1'Hado qa 0g600 60 10 48 s31L0

393



sBunsi

20 -08 ] -014
"8k-vL 2anbig

ana otELo
0 Sq d14vLd 00EL0 14020

I0TLVYADTIINOD ONTINISHHIIY HIEWAN £ ISVE SQTI0H 374Vl NOILVINWYAd ! 06210
A0Y1S 40 dOL! $ noa  AoVlS 0820 14020
SALRG 00L! 001 sa olzlo 48920

Ya¥Y AOVLIS ¢ 09210
00 1Y 920
€06 90 L0 KO 19920
LR A AN-AN A qq 05210 L0 20 S0 80 12920
20 1920
L0 00 SO #0 14520
Zhitotsnteigtlty ad onzio E0 80 L0 90 16520
80 1 8520
G0 20 LO ®O 4 HS20
gstetlintLigitto aq 0€21L0 10 90 €0 0O 10620
90 +dh20
L0 80 £0 1O 1820
9'Lfg e ntcioLe q94q 0zzLo S0 00 LO 20 +Lh20
90 19020

€0 00 L0 O seheo

394



The last module of the listings is the SYSTEM module.
SYSTEM contains all messages, variables, and tables for
the program, since we don’t know its length beforehand.

The last, and most important, table is PTABLE, the per-
mutation table we've been talking about. Since this is
generated completely by the program, it’s simply defined
as the last location of the program.

Moving backwards, we find RINDT. This is a “Rotation
Indices” table used by subroutine ROTATE. It contains the
indices for converting from the “standard” array into
rotations and mirror images. The last half of the table
contains the indices from reconversion.
Hints and Kinks 144

Retranslation
We've talked about translating from one array
to another one representing a rotation or
mirror image. Unfortunately, retranslation
back from the second to the first is not
straightforward. To convert to a 90 degree
rotation, for example, we have —

ol1j2 6|3|@ y :
345 —= 7141 3 27
6|718 8l5(2 & ]

o

To take the new array and reeoonvert back into

the old array after processing, we'd have —
NEW I X OLD INDEX

g2 21518 72 3
3]s —> 11417 H g
6178 7|36 ¢ §

The translation indices on reconversion bear
some relationship to the conversion indices
{each is 8-conversion index), but this
relationship doesn't hold for other
reconversions!

It's probably simplest to establish another
table of reconversion indices, which we have
done in the last half of RINDT.

There must be an easier way to implement this

program! (Maybe you'll be the one to discover
the way. )

395



The GRIDTB is a table of values used by the DRAWL
subroutine to draw the tic-tac-toe “grid.” Each five bytes
defines one line.

The MOVETB table holds the address of each space cell used
in a computer move. Each of the four entries may point to
a space cell in the PTABLE so that it may be “adjusted” at
the end of each game.

ANALTB is the “Analysis Table.” It holds a count for each
row, column, and diagonal of the current array. We’ll
discuss this under the ANALSR.

The ROTTAB table is the “Rotation Table.” It holds the
base three values for each of the eight rotations and
mirror images of the current array. As these may be up to
19683, the entries are eight “words” of 16 bits.

There are 12 system messages at the beginning of SYSTEM.
All of these are terminated by a 0.

The variables are described in the comments field of each
variable, and we’ll discuss them in the subroutine
description.

Program Description

Here, as in MORG, we’ll use a “bottom-up” approach to
describe the system modules, starting from the least
complex.

Fill Character Subroutine (FILLCH)

The FILLCH subroutine fills a given character into any
area of memory. It decrements the byte count in BC down
to zero and fills memory by using DE as a pointer register
pair.

Delay Subroutine DELAY

The Delay subroutine delays from 1 through 65536 milli-
seconds, depending upon the count in the HL register pair.
It is used only for large delays for display of system
messages in tic-tac-toe.

396



Divide Subroutine (DIVIDE)

The Divide subroutine implements a divide of a 16-bit
number in HL by an 8-bit number in E. The quotient is in
HL and the remainder in BC on exit. DIVIDE is used by
BINBAS for binary to base three conversion, although it is a
general-purpose divide.

Base Three to Binary Subroutine (BASBIN)

BASBIN is a specialized subroutine for tic-tac-toe. It con-
verts an array representing a tic-tac-toe configuration to a
base three number. The array is either ARRAY1 or ARRAY2
in the system; each is a nine-byte table, holding a 0 for a
space, 1 for an X, and 4 for an 0. At the end of the
conversion, HL holds the base three number in binary, 0
through 19683. The array is organized as shown in Figure
14-19.

ARRAY +0 VALUE FOR SPACE 0
+1 VALUE FOR SPACE 1 A e
+2 VALUE FOR SPACE 2 =4FORO
+3 VALUE FOR SPACE 3
+4 VALUE FOR SPACE 4
+5 VALUE FOR SPACE 5
+6 VALUE FOR SPACE 6
+7 VALUE FOR SPACE 7
+8 VALUE FOR SPACE 8
o]l 1] 2
3{4]s
6|78
Figure 14-19. ARRAY1/2
Format

Binary to Base Three Subroutine (BINBAS)

The Binary to Base Three subroutine does the opposite of
BASBIN — it converts a binary number of 0 through 19683
to nine base-three digits of 0, 1, or 2. It then converts the 2

397



to a 4 and stores the nine digits in a given array (ARRAY1
or ARRAY2). The binary number is the “current value” of
the configuration.

Random Number Routine (RAND)

RAND generates a pseudo-random number from a “seed”
value. Its operation is virtually identical to RAND in the
MORG program. On exit, BC contains a random number
from O through 65535. This number is used to “shuffle” the
“balls,” or space cells, for the current configuration, to
choose one of the space cells for a computer move.

Input Subroutine (INPUSR)

The Input subroutine detects a key press of 0 through 9
and ignores all others. Tic-tac-toe uses only these keys for
user input to define the play. A debounce of 100
milliseconds is performed by calling subroutine DELAY.

Display Message Subroutine (DSPMES)

DSPMES is a subroutine to display a given string of ASCII
characters on the screen. On entry, HL points to the string,
and BC points to the screen position. The routine picks up
a character from the HL pointer and then outputs it by
using BC as a pointer. The string is terminated on a zero
(null) character. DSPMES is only called by HISTUP to output
the “history” message along the bottom of the screen.

Large Character Display Subroutine (LARGEC)

This subroutine is a general-purpose subroutine to output
“large” characters of 8 by 8 pixels to the screen. The
subroutine is called with A containing the character to be
output in ASCII and IY pointing to the upper left-hand pixel
of the 8 by 8 block to be used.

The characters A through Z, space, “~”, “?”, and “!” may be
output. They are defined in the DOTTAB table of LARGEC as
an 8 by 8 dot matrix, reading from left to right and top to
bottom.

Large Message OQutput Subroutine (MSGOUT)

MSGOUT is similar to DSPMES except that it calls LARGEC

to output a large character message. On entry, HL points
398



to the message and IY points to the start of the screen area
for which the message is intended. 1Y will point to the
upper left-hand pixel of the first character position of the
message.

MSGOUT calls LARGEC until a terminating zero (null)
character is detected in the message. Most tic-tac-toe
messages are large character messages, except for the
“history” message.

Display Screen Array Subroutine (SCRNDS)

SCRNDS is a specialized subroutine to convert an array
(ARRAY1 or ARRAY?2) to a tic-tac-toe grid with Xs and Os.
The “grid” of the tic-tac-toe pattern is never rewritten
during the program. SCRNDS, therefore, only fills in Xs and
Os in the nine tic-tac-toe positions.

SCRNDS scans through the array from top to bottom and
tests to see whether an X or O is present. If a blank is
found, nothing is output for the position. If an X or O is
found, SCRNDS calls MSGOUT with a “dummy” string
consisting of an X or O followed by a zero (null). It puts
this dummy string in the TEMP1 variable, a 16-bit variable
allocated for this purpose.

Draw Line Subroutine (DRAWL)

The DRAWL subroutine draws either a vertical or
horizontal line on the screen. The line is drawn through
character positions rather than pixel positions. This
makes the screen addressing a trivial rather than complex
task.

On entry A contains the graphics character to be used, C
contains a zero if a horizontal line is to be drawn, or a
non-zero if a vertical line is to be drawn. HL contains the
screen start position. B contains the number of character
positions to be used.

DRAWL first decides whether a vertical or horizontal line is
to be drawn. A branch is made to the proper code for each.
If a horizontal line is to be drawn, A is stored indirect to

399



HL, HL is incremented, and B is decremented down to zero.
If a vertical line is to be drawn, A is stored, HL is
incremented by 64, and B is decremented down to zero.
Note that vertical lines must start at the top position and
horizontal lines must start at the left.

DRAWL is called by MAIN1. MAIN1 uses the GRIDTB table in
the system to draw a complete set of lines representing the
tic-tac-toe grid. The GRIDTB table is set up so that each
entry is five bytes long, corresponding to values to be put
into A, B, C, and HL. It calls DRAWL repeatedly until it has
used every GRIDTB entry.

Array Translator Subroutine (ARRXLA)

The Array Translator Subroutine performs a rotation or
mirror image translation from one array to the next. It is
used in conjunction with BASBIN to find the new array and
then to find the new base 3 value represented from the
new array.

As an example, suppose that a rotation of 180 degrees is to
be done on the current array. ARRXLA is entered with IX
pointing to ARRAY1 in SYSTEM. IY points to ARRAY2 in
SYSTEM. HL points to the list of 9 indices for the 180 degree
rotation in SYSTEM at 1ED'. The nine indices of ARRAY1 are
converted to the nine indices of ARRAY2 as shown in
Figure 14-20. When the conversion is done, ARRAY?2 holds
a tic-tac-toe configuration rotated 180 degrees from
ARRAY1. A BASBIN can now be done on ARRAY2.

ARRAY1 ARRAY2
o112 , 8| 7] 686
3|1 41]s ROTATE 5| 41} 3

8 180 21110
ARRAY1 INDEX ARRAY2 INDEX

0 —_— 8

1 —_— 7

2 —_— 6

3 —b 5

4 —_— 4

400



5 R 3
6 — 2
7 —_— 1
8 — 0

Figure 14-20. Array Translation

ARRXLA is chiefly called by the ROTATE subroutine, which
performs the seven rotations for finding the smallest value
initially for the PTABLE, and then, later on, rotates the
current tic-tac-toe array to find the smallest value for the
PTABLE search.

Analyze Array (ANALAR)

ANALAR analyzes the current array to find eight hash
values for the rows, columns, and diagonals of the given
array. Although we’ve been discussing a base three value
that represents the current configuration, the values
actually held in the current (ARRAY1) or working (ARRAY2)
arrays are actually O for space, 1 for X, and 4 for O. The
reason for these values is that a simple add can give us
unique values for the numbers of Xs, Os, and spaces in
each row, column, or diagonal.

Hints and Kinks 14-5
Hash Values

A hashing technique uses an approach something
like this: Is there a way to convert all

possible actions io a series of unigue numeric
values that can then be used efficiently in
processing?

An example from an assembler: Some assemblers
add the ASCII characters in a symbol together
to get a hash total. It turns out that this is
(relatively) unique. The sum of “NAME'', for
example, is different from "“START" . This
one-byte hash value can then be used in a more
efficient search of the symbol table than a
Six— or seven—byte string comparison; this
speeds up symbol table searches and reduces
assembly time.

401



If the row, column, or diagonal has three spaces, the hash
value will be 0. If it has two spaces and an X, the hash will
be 1. Two spaces and an O yields a 4. One space and two
Xs gives a 2. One space and two Os gives an 8. One space
and an X and O gives a 5. No spaces and three Xs gives a
3. No spaces and two Xs and one O gives 6. No spaces and
one X and two Os gives 9. No spaces and three Os gives 12.
All of these values are unique and represent only one
defined configuration. A test can, therefore, be easily made
for “two Xs and a space,” or “three Os.” This greatly
simplifies testing for tic-tac-toe conditions.

At the end of ANALAR, the eight hash values are saved in
the ANALTB (Analyze Table) of SYSTEM.

Number Subroutine (NUMBER)

The NUMBER subroutine also helps to analyze an array. It
counts the number of Xs, Os, and spaces in the given array
(ARRAY1 or ARRAY2). The number of each is put in
variables NOX, NOO, or NOSP in SYSTEM. NUMBER is called
by MAIN1 to analyze the configuration for PTABLE.

Rotate Subroutine (ROTATE)

ROTATE calls ARRXLA eight times to perform the rotations
and mirror image translations of the current array. After
each call, the translated array is converted to a numeric
value by BASBIN. This numeric value is then put in
ROTTAB in SYSTEM. At the end of ROTATE, the eight base
three values are in ROTTAB and the DE register holds the
lowest value. This lowest value is then used either to
establish the PTABLE entry (MAIN1) or for the search of
PTABLE.

History Update (HISTUP)

HISTUP is called at the end of the game with a L (lose), W
(win), D (draw), or C (concede) in the A register. This code
is then put in the last position of the history buffer, and
the entire history message is then output to show the
history of the last 128 games. If 128 have been played,

402



HISTUP “slides” the last 127 games into the first 127 game
positions by an LDIR and then stores the current game code
in the 128th position.

Memory Subroutine (MEMORY)

MEMORY implements the “reward”/“punishment” action at
the end of each game. It is entered with a -1 in A for a lost
game, a 3 for a win, and a 1 for a draw.

MEMORY then uses the MOVETB, which has a record of the
space cell addresses, to add or subtract counts from the
space cells that were used in the games. A comparison is
made for increments over 99. If the count is greater than
99 (on a win or draw), the space cell is set to 99. A
comparison is also made for decrements below 0. If below 0
(on a loss), the space cell is set to 0.

Main Driver Modules

There are four main driver modules, named MAIN1, MAIN2,
MAIN3, and MAIN4. MAIN1 is used to perform “first time”
actions, primarily to build up the PTABLE. Since this action
takes several minutes, it is only done one time on each
load. MAIN2 through MAIN4 are used to implement the
actual game-playing.

MAIN1

MAIN1 first clears the screen with graphics 80H characters
(FILLCH) and then displays the history message (DSPMES).
Initially the history message will be filled with blanks,
since no games have been played. DRAWL is then used to
draw the grid.

Next, the Move Table MOVETB is cleared. An entry of 0 is
used as a terminator since 0 is not a valid address for a
PTABLE entry.

Now the First Time Flag (FRSTF) is tested to see if this is
the first time through the program. If not, the program
goes on to MAIN2 actions. If it is the first time, the history
line is filled with blanks (to handle any restart of an
already executed program), and a WAIT ONE message is
displayed on the screen (MSGOUT). 403



Now the Permutation Table (PTABLE) is generated. The
algorithm used is identical to that described above under
“Generation of a Permutation Table.” A count is incre-
mented from 000000000 through 222222222 in binary
form. BINBAS is used to find the equivalent tic-tac-toe
array. NUMBER is called to count the number of Xs, Os,
and spaces. ANALAR is called to analyze the eight rows,
columns, and diagonals.

If the array passes all of the tests, ROTATE is then called to
find the lowest value of the eight possible rotations and
mirror images. If the current array is the one producing
the lowest value, a new PTABLE entry is made. The
number of spaces in the array is then counted and stored
in the next byte. Space cells are allocated dependent upon
the number of spaces. The number of spaces is then
divided by 2 to produce the initial count to be put in each
space cell. The quotient of this divide is conveniently equal
to 4,3,2, or 1 per the algorithm.

If an entry in PTABLE is made, a dash is alternately
blinked on and off at the end of the WAIT ONE message to
show processing activity.

MAIN2

MAIN?2 is entered at the end of PTABLE computations for
the first time or reentered for the main loop in playing
games. The main loop is ART070, entered from MAIN1 for
each new game. Location MAINLP is reentered for each new
move of a game.

If this is a start of a new game, ART070 outputs the title
message and then clears the main array, ARRAY1 (FILLCH).
MAINLP is then entered. When MAINLP is entered, the
game has either just started or has been going on for a
number of moves. In either case the action is the same. A
call is made to ANALAR to analyze ARRAY1.

If two Xs exist, the computer finishes the game in the code
at ART102. To do this, however, it must try an X in spaces
until it finds one that produces an analyzed value of 3
(three Xs). It laboriously calls ANALAR after each try.

404



When the proper place for the X is found, it outputs an
I WIN message and goes to the “end action” code at
MAINEA in MAIN4.

If two Xs are not present, the program then tests the Move
Number variable MOVENO for 5. MOVENO represents the
number of times the computer has played and is
incremented after each computer play. If this is the last
(5th) move, the computer plays in the only space, and then
tests for a win. If there’s a win, it goes to the action in
ART106. If there’s a draw (there cannot be a loss), it outputs
a DRAW! message and goes to the end action code in
MAINEA.

If ART114 is entered, none of the above applies. ROTATE is
now called to find the eight rotation values. ROTATE
returns the smallest value in DE. This is the PTABLE value
that will be used for the search. A search is now made
(ART120). The PTABLE value must be found if PTABLE has
been constructed properly. After the value is found, MAIN3
is entered.

MAIN3

With the PTABLE entry found, the program now must
handle two arrays. The first, in ARRAYI1, is the present
tic-tac-toe array. The second, in ARRAYZ2, represents the
translated array from PTABLE. If the PTABLE value was the
same as the present array, both arrays will be identical (0
degrees rotation), otherwise ARRAY2 will hold a rotated or
mirror image array.

ARRXLA is called to convert the present array to the
rotation or mirror image in ARRAY2. Then ARRAY2 is
analyzed by ANALAR. If two Os are found, the computer
“blocks” the move by putting in an X in the proper space.
The code at ART102 is used to find the space which
produces the proper block, and the code at ART106 finds the
proper space cell for the blocking move. After the block, a
JP is made to ART172 for further processing.

If a blocking move is not possible, the code at ART125 is
performed. This code finds the total count of all space cells

405



associated with the permutation. If this total count is zero,
this path is hopeless and will be deleted. The MOVETB is
used to find the last move, and the space cell for the last
move is zeroed. An I CONCEDE message is then output,
and the end action at MAINEA is performed. This
concession action will rarely happen.

If the total count is non-zero, a random number less than
or equal to the total count is found by calling RAND. The
space cells are totaled until the total is equal to or greater
than the random number. This action is analogous to

stirring the balls in the box and picking one! (See Figure
14-21.)

CONFIGURATION: 0
PTABLE ENTRY:
46H (000 002 121) CONFIGURATION IN
BASE 3

5 # OF SPACE CELLS
10 COUNT FOR SPACE 0
2 COUNT FOR SPACE 1
7 COUNT FOR SPACE 2
1 COUNT FOR SPACE 3
1 COUNT FOR SPACE 4

PICKING A SPACE:

1. TOTAL COUNT OF SPACE CELLS =10+2+7+1 = 21

2. FIND RANDOM # <=21:12

3. O=~wed TOTAL

4. ADD SPACE CELL 0 : TOTAL = 108, < RANDOM # OF 12

5. ADD SPACE CELL 1: TOTAL =12, = RANDOM # OF 12

6. SPACE CELL 1 WILL BE USED FOR MOVE, CAUSING X TO BE PUT INTO SPACE 1

X

X0 X

Figure 14-21. Using RAND To Pick A Space

406



Now an X is stored in the array (ARRAY?2), and a record is
made of the space cell move in MOVETB. We worked with
ARRAY2 and then converted it back to ARRAY1 by a call to
ARRXLA. RINDW holds the pointer to the “reverse indices.”
SCRNDS is then called to display ARRAY1, and MAIN4 is
entered.

MAIN4

MAIN4 is used to get the human input. It outputs the
YOUR MOVE message and waits for user input from
INPUT. A check is made of the validity of the number of the
square chosen and a TRY AGAIN message output.

When the human inputs a valid move, an O is stored in
ARRAY1 and SCRNDS is called to display the array. ANALAR
is then called (ART185) to analyze the new array. Only a
human win can occur at this point. If the human wins, a
YOU WIN message is output and the end action at MAINEA
is performed. If no win occurred, the next computer move
must be done and MAINLP in MAINZ is reentered.

The end action at MAINEA is entered at the completion of
every game. Before this point the HISTUP (History Update)
and MEMORY routines have been called to update the
history message and “reward” or “punish” the PTABLE
space cell. MAINEA outputs a ANOTHER? message and
waits for a key press. On the key press, ARTIP in MAINT is
reentered for a new game.

Using This Program

As in the case of MORG, this program was designed and
coded to let you see a significant chunk of presumably
worthwhile code. If you'd like to experiment with the
program, you may enter the machine code by using Disk
DEBUG or T-BUG. Figure 14-22 gives the machine code
after the program load. There are several thousand bytes,
but a fast typist could enter them in an hour. Checkpoint
by saving partial results! You can do this by dumping to
disk (by DUMP) or to cassette (P command in T-BUG) and
then reloading to take up where you left off.

407



8000
8010
8020
8030
8o40
8050
8060
8070
8080
8090
8040
8080
8oCo
8opo
80E0
80F0
8100
8110
8120
8130
8140
8150
8160
8170
8180
8190
8ta0
81B0O
81Cco
81D0
81EQ
81F0
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8240
82B0
gaco
82D0
82EQ
82F0
8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8340
8380
83ce
83D0
83E0
83F0
8400
8410
8420
8430
8uuo
8450
8460
8470
8480
8490
8440
8480
84CO
84D0
B4EQ

408

31
88
28
85

11
21

00
21
62
DD
Ag

T4
DD
DD
89
6E
21
11
84
ES
6E
77

67
3C
03
cD
FD
8a
00
BY
09

21
21

DD
45
DD
83
19
3D
01
93
03
01
TE

6C
21
21
A2
DD
28
8s

80
7C
FA
E1
BY
01
13
21
21
E1l
DD
DD
DD
D5
04
32
21
7E
07
FD

11
13
oD
05

5C
00
00
01
87
89
AC
AS
ED

DD
D5

23
85

08
BT
Et
cD
FD
34
89
F8
89
AR

09
CB
09
09
TE
28
DD
77
23
23
DD
1C
DD
89
C5
42
bD
20
00
89
00

CcD
AC
46
83
21
DD

71
E5
0B
24

88
77
00
08
52
ET
oo
20
64
00
DD
71
01

21
FE
cD
00
5B
0B
F8
21

84
28
03
ED
00
89
bD
21
El
88
00
o]
18
DD
06
03
83
18
7E
3E
9B
21
02
88
29
(o]
AC
52
21
AF
FF
01
c3
16
67
DD
43
DD
ES
89
3k
72
5D
06
3C
5D
FE
()]
ch
C3
00
FE

D8
58
3F
o7
ES
87
09

60
F5
14
89
E5S
00

86
o4



8uFo
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8540
8580
85C0
8500
85E0
85F0
8600
8610
8620
8630
8640
8650
8660
8670
8680
8690
8640
86B0
86co
8600
86E0
86F0
8700
8710
8720
8730
8740
8750
8760
8770
8780
8790
8740
8780
87¢c0
8700
87E0
87F0
8800
8810
8820
8830
8840
8850
8860
8870
8880
8890
8840
8880
88¢Co
88D0
88E0
88F0
8900
8910
8920
8930
8940
8950
8960
8970
8980
8990
8940
89B0
8gco
8900

409



89E0 01 CF 3E 8F 01 01 DA 3E 8F 01 01 ES 3E 8F 01 01
89F0 FO 3E FF 00 01 02 03 04 05 06 07 08 02 05 08 01
8A00 o4 07 00 03 06 08 07 06 05 04 03 02 01 00 06 03
8A10 00 07 O4 01 08 05 02 02 01 00 05 04 03 08 07 06
8az20 00 03 06 01 O4 07 02 05 08 06 07 08 03 04 05 00
8A30 01 02 08 05 02 07 O4 01 06 03 00 00 01 02 03 04
8A40 05 06 07 08 06 03 00 07 04 01 08 05 02 08 07 06
8450 05 04 03 02 01 00 02 05 08 0t 0B O7 00 03 06 02
8460 01 00 05 ok 03 08 07 06 00 03 06 01 04 07 02 0%
BATO 08 06 07 08 03 04 05 00 01 02 08 05 02 07 04 01
8A80 06 03 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
8A90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8AAD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8ABO FF FF FF FF FF FF FF FF FF 00 0C 00 00 00 00 00
8ACO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8ADO 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00
BAEQ 00 00 00 00 00 00 00 00

Figure 14-22. Machine éode
to Tic-Tac-Toe

Hints and Kinks 14-6
Checkpointing

How often should you checkpoint? I'm from the
old school — I never trust computers. As a
matter of fact, you may employ Barden's Law:
The more you checkpoint, the less you'll need
it! If you don't checkpoint, an operator error
or power failure will surely wipe out several
hours of work. But seriously — the TRS-80 is
much less prone to losing data than
minicomputers of several years ago! And
reliability will continue to get better with
newer hardware.

You may also key in the source for the program and use
the Disk Assembler to assemble and load your own version
for experimentation. This is quite a task, but it’s certainly
possible, especially since the program is modular. EDTASM

may also be used to assemble one huge program.

410



APPENDIX |

Z-80 Instruction Sef

A Register Operations

Complement CPL
Decimal DAA
Negate NEG

Adding/Subtracting Two 8-Bit Numbers

A and Another Register
ADC A;r SBC Ar
ADD Ar SUB Ar
A and Immediate Operand
ADC An SBC Ann
ADD An SUB An
A and Memory Operand
ADC A,(HL) ADD A,(HL) SBC (HL)
ADC A,(IX+d) ADD A,(IX+d) SBC (IX+d)
ADC A,(JY+d) ADD A,(IY+d) SBC (IY-+d)

Adding/Subtracting Two 16-Bit Numbers
HL and Another Register Pair
ADC HL,ss ADD HL,ss SBC HL,ss
IX and Another Register Pair
ADD IX,pp ADD IY,rr

Bit Instructions

Test Bit
Register BIT b,r

SUB (HL)
SUB (IX+4d)
SUB (IY+d)

Memory BIT b,(HL) BIT b,(IX+d) BIT b,(IY4)

Reset Bit
Register RES b,r

Memory RES b,(HL) RES b,(IX+d) RES b,(IY-4d)

Set Bit
Register SET b,r

Memory SET b,(HL) SET b,(IX+4+d) SET b,(IY+d)

411



Carry Flag

Complement CCF
Set SCF

Compare Two 8-Bit Operands

A and Another Register CP r
A and Immediate Operand CP n
A and Memory Operand
CP (HL) CP (IX+4d) CP (IY+4d)
Block Compare
CPD,CPDR,CPI,CPIR

Decrements and Increments
Single Register
DECr INCr DEC IX DEC IY INC
Register Pair
DEC ss INC ss DEC IX DEC IY INC IX INCIY
Memory
DEC HL DEC (IX+4d) DEC (IY+4d)

INC (HL) INC (IX+4d) INC (IY4d)

Exchanges

DE and HLL. EX DEHL
Top of Stack
EX (SP),HL EX (8P),IX EX (SP),IY
Input/QOutput
1/0 To/From A and Port
IN A,(n) OUT (n),A
I/0 To/From Register and Port
IN r,(C) OUT (O
Block
IND,INDR,INR,INIR,0TDR,0TIR,0UTD,0UTI

Interrupts

Disable DI
Enable EI
Interrupt Mode
Mo IM1 IM2
Return From Interrupt
RETI RETN

Jumps

Unconditional

JP (HL) JP (IX) JP (IY) JP (nn) JR e
Conditional

JP ccnn JR Ce JR NZe JR Ze JR NCe
Special Conditional

DINZ e

Loads

A Load Memory Operand
LD A,(BC) LD A,(DE) LD A,(nn)

412



A and Other Registers

LD Al LDAR LDILA LDRA
Between Registers, 8-Bit

LD rr’
Immediate 8-Bit

LD rn
Immediate 16-Bit

LD dd,nn LD IX,;nn LD IY,nn
Register Pairs From Other Register Pairs

LD SP,HL LD SP,IX LD SPIY
From Memory, 8-Bits

LD r,(HL) LD r,(IX+4d) LD r,(IY+d)
From Memory, 16-Bits

LD HL,(nn) LD IX,(nn) LD IY,(nn) LD dd,(nn)

Block
LDD,LDDR,LDI,LDIR

Logical Operations 8 Bits With A

A and Another Register
ANDr ORr XORTr

A and Immediate Operand
ANDn ORn XORn

A and Memory Operand
AND (HL) OR (HL) XOR (HL)
AND (IX+d) OR (IX+d) XOR (IX+d)
AND (IY+d) OR (IY+d) XOR (IY+d)

Miscellaneous

Halt HALT
No Operation NOP

Prime/Non-Prime

Switch AF
EX AF,AF

Switch Others
EXX

Shifts

Circular (Rotate)
A Only RLA, RLCA, RRA, RRCA
All Registers RLr RLCr RRr RRCr
Memory
RL (HL) RLC (HL) RR (HL)
RL (IX+4d) RLC (IX4d) RR (IX+4d)
RL (IY+4d) RLC (IY4+d) RR (IY+4d)
Logical
Registers SRL r

Memory SRL (HL) SRL (IX+d) SRL (IY+4d)

Arithmetic
Registers SLA r SRA r
Memory
SLA (HL) SRA (HL)
SLA (IX+4d) SRA (IX+4d)
SLA (IY4d) SRA (IY+4d)
BCD RLD RRD

RRC (IX+d)
RRC (IY+d)

413



Stack Operations
PUSH IX PUSH IY PUSH qq POP IX POP IY POP qq

Stores

Of A Only

LD BC).A LD (DE)Y, A LD (nn) A
All Registers

LD (HL),r LD (IX4d),r LD (IY4d),r
Immediate Data

LD (HL),n LD (IX+4d),n LD (IY+d),n
16-Bit Registers

LD (nn),dd LD (un),IX LD (nn),IY LD (nn) HL

Subroutine Action

Conditional CALLs CALL cc,nn
Unconditional CALLs CALL nn
Conditional Return RET ce
Unconditional Return RET
Special CALL RST p

414



APPENDIX 0t

Z-80 Operation Code Listings

415



v ® © @ ® © © © ® © ®© O ® 6 ® © o o o o

@ @ © © ©

® © ¢ © ¢ © ©¢ 9 © © o

Ald

@ © ¢ o ©

®© ¢ © ©¢ © © ¢ @ ® © ©

N

® @ e © ©

® © © ©¢ © @ 6 © ®© © o

wy

Y 03 (P+ Al ANV V
Vo (P+X1) ANV ¥
v o1 (1H) ANV v
VOluaONY v

V 012 QNY V
ALOHdi Al

X1 04 dd 4 x)

TH 04 554+TH
VOoI{(p+AD+Y
VOoL(p+XD+Y
V04 (1) +V

v Ooii4Y

v Ooluty

YOI AD+H(P+AN+Y
VoL A +H(P+XD+Y
V0L AD+(HI+V
YOI AD+U+Y

YOI AD+4+Y

TH O AD+55+TH

uondiseg

0110010t | 1ott1111

01100101 | 10111011

0LL001LO0L

K oL1001 11

400101

[ 10014100 | totrtntt |

[1001ddoo [ rott10t1

_ LO01 5500 |

[ 01100001 | _o::_ﬂ.

[ 01100001 | 10111011

_o:oooo_

4 00001

u _o:cco:_

oLLi000t | tottiLtt |

[orr1000t [ 10111011 ]

01110001

[ 011100t 1

410001
{ototssio | 1otioitt |

jewsoy

(P+AD ANV
(P+X1) ONV
(1H) aNv

u aNy

1 OGNV

WAl aav
dd'x) aav
sS4 aav
(P+AN'Y Qav
(P+x1'v aav
(IH)'v Qav
Iy aav

vy aav
(P+AN'Y DAV
(P+X1)'V Dav
(H)'v Dav
u'y Dav

Y Oav

$$IH DAV

Siuowouly

416



® © © ® ¢ ©

® & © ¢ © ©¢ © © ©

® 6 © ©

@ ¢ ©¢ ¢ © © @ © ©

® ¢ © ©

® © © o ©¢ © © © ¢

@ © 6 ©

auo Aq (1H) tuswaide(q
auo Aq 1 juswana(
v isnlpy [ewdaqy

(ajdwiod s5,|) v suswajdwor)

jeaday ‘asedwor yooig
jeadas ou ‘asedwo?) yojg
jeadal ‘asedwor) yoojg
jeadas ou ‘asedwo)) o|g
(P + Al¥Y 8seduio)
(P+X1)'v asedwoy

(1H)'v siedwo)

uiy aredwon

1y asedwon

Bey Assed juswsjdwior

uu 11y Ajjeuontpuodun
22 j1 LU Je BUHNOIGNS TIVD
(P+AD 3o qugis3)
(P+X1) 30 quqissy

(H) 0 q ug isay
4309 Hq sy

tot 4+ 00

11100100

10001101

[ tottoten |

10000101

lottotit

10011101

LoLiottt

10010101

Lottottt

ottitiol

ottt |

otttiiot

| tottont

_o::_o_

fotttinu |

4 1110t

teittioo

u

Trottoort ]

u

| oot > 11

ol aio

L10LooL1

1ottt

olt 9 10

11010011

tolttott

otl 9 10

110100t 1t

4 9140

Liotool L |

(1H) 2340

4 03a

vvda

1dD

AdidD

142

¥qdD

ado

(P+AD dD
(P+XD dd
CH) 4D

u dd

1.dD

400

uu YD
uu’ad TIvVD
(P+ADq L9
P+x1'q 18
QH)'q Lig
rq 118

[d

41



U woiy indul Yiim y peot
¢ apow jdnisatul jag
| apow jdnisajul Jag
0 apow jdnisagul Jag

HeH

aAle 1-g awnd jag

1M pue 3¢ sbueyaxg
anlpe Jy swid Jag

Al pue (dg) 8Bueydx3

X1 Pue (d$) abueydxy

H pue (dg) eBueidxy
sidnusagul a|qeuy

0548 ! ¥ pue g juswaiag
sidnuiaug ajgesig

sted 49451681 Juswadag
auo Aq >_chEw._umo

auo AqQ | uswaldag

8uo Ag (p -+ Al) suswalsq
suo Aq (p 4 X|) duswanag

uondulseq

[ v Juoton

01111010 | 1011011

ottototo | tottoit |

[ ottoooto [ tottotit |

oLtottio

100L 1011

00010000

[ ttoootit 1ottt

[ 11000111 [ 1ott1011

11000111

!

Lottt
| zo |oooot000

L1101ttt

L1OLss00

[ tiotot00 | 1otitn ]

[ t1otot00 | totttont

P

| tototioo | ot

p

[ 10101100 | 1ot t1011 |

tewaoy

(u)v NI
z Wl

L wi
oWl
LIvH
XX3
TH'3a X3
A’V X3
AP(dS) x3
X1'(dS) X3
TH(dS) X3

ss D3d
Al 234
Xl 23a
(P4 A1) D3Q
(P+x1) 230

S1uowouW

418



Aused ou 1 sane(e) dwnf
aAye|es dwin| jeuonipuodun
Auied 31 aalejal dwng

uu o} dwnl jeuonipuodun
23 41 uu o} dwng

(Al) 04 dwinl] _mwo._:v:ouc:
(x1) 04 dwnl jeuoijipuodun
(1H) o4 dwin| |euoypuodun
teadas ‘yndut g /] ¥0|g

(D) woyy indul O f| ¥0ig
teadas 4nduy 0| ¥20|g

(D) wouy indut O /i 30019
sred Ja)s1Ba1 Juswaloug
auo Ag A| ‘uswaiou|

auo Aq X} fuswauduy

3uo AQ (P + Al) iuswany|
9uo AqQ (P 4 X1} duswanuy
8uo Aq (TH) juawadu|

auo Aq 4 juswaldu|

(D) wouy indut yiim 1 peo

z2 | 00001100 |

= | 00011000 |

z2  [oootitoo |

u L0000 1 |

[ u fowo ]

[ oototit Jrottinn

| tooto1 1t [ totitont

LOO1OLLL _

_o_oo:o,. wottot1l |

oloootot | tottottt

oLoLL10L | toLtoLLt

| otolotot | tottottt

_ 1 100Ss00

11000100 | L0L11L11L

:ooopoc_ lottiott

| oototio0 | totntinl

[ oototion | tottiort

00101100
_Oo_. 4 00

{ 000 4 10 tottotit

DN ¥r

e ir

D o

uu dr
uu?d gr
(AD) df

(x1) dr
(H) dr
YINI

INI

YGNi

ani

$s ONI

Al DNI

X1 DNt
(P+AD ONI
(P+X1) ONI
(1H) ONI

4 ONI

Or: NI

[=}]
el
<t



Ald

(P X1) 04 4 2u0ig

(P+X1) 08 u ai0ig

UU UCHEeIO| YIIM X| PO
uu yim y() peot

¥ Yim | peol

(1H) o4 1 aioig

UU UOLEI0} YiIM T PROT
uu uo1ed0] Yim Jled 19)siBas peol
uu Yim ared Jaisibas peon
(M) Ot u Buyg

(3Q) 04 v d40ig

(08) 04 v 21045

Y Yim y peol

UU UOHEIO| YHM Y Peo

| Yim ¢ peo

(30) Yim v peol

(08) yim v peoy

040z 41 anyejas dwnp

013Z-uou 4 aAnejas dwng

uoydiszseq

2 QLLL0 | Lottiolt

01101100 | LoLtLLOLL

_

{v | v ] o000t00] totrtott
|
_

u | otototoo | 10111011

1

11100010 | LLOLOL L L
40L110

[ T« Towiowo

u u LLOIPPLO | LOLLOLLL

_ u _ u _ LO00PPOO _

[ v Touotioo]

01000000

11111010 | totiot1t

[ v Jototrtoo |

L1101010 | LOLIOL LY

01011000

_ 01010000
> Joooiow0

_ tA _ 00000100 _

jeucy

PP +x1)
u(p X1
uu’‘yj
(uuyxy
v

Y(H)
(uu) 4
(uuypp
uu’pp
U'(1H)
v'(3Q)
v'(o8)
¥y
(uu)'y
'y
aarv
(oa)r'v
2’7

3'ZN

Jrowouly

al
al
al
o
@
al
a
al
al
a
@
a1

420



teadas ‘prem ; ‘peo| yoojg
1eadal ou ‘piem 4 ‘peo| 3oolg
Al Yitm (g peo

X1 Yim d§ peoy

TH Yiim dg peol

(P+ A1) WM J3 peoy

(P4 X1) Y#m 1 peoy

(1H) yum 1 peoty

U Yiim 1 peon

A YHM i peot

Y Yilm y peoy

UU UOIEIO0| O} A| 210iG

uu uolEI0| O} X| 3J0Ig

UU UOHEI0| O} TH 340I§

uu U0} o} sied JaysiBal 2J0ig
Uu UoYE0| O} Y 204§

(P+ Al) 04 2 21018

(P+ Al) 04 u i0ig

UU UOKEIO| Yim A] Peo]

uu Yim Aj peor

ooot 1ot | totottt |

00010101 | tottoltt |

T

T

| tootittt

ott + 10] tortit |

ott 4 10] totiott |

[ v TJoi:oo]

A _.O_

[ tiriooto] totioit |

u 01000100 | L0t 11tLt |
u 01000100 | toti1ott |
u__ Jo1000100 |

u [ iooreto] tottott |
| v Jouotioo

I I

u otio1100 | 1ottt |
u otoo100 | Lottt |
u | 10000100 | tottttnn |

3aq

am

Alds
X1'dS
H'dS
(P+ANY
(P+X
(HYs

u’‘s

A

v’y
Ar(uy)
X1'(uu)
TH(uu)
pp’(uu)
v'{(uu)
PP +AD
uwp 4 Al
(WU Al
uw’Al

al
al
ai
al
[e}}
"
al
al
(O]
al
at
al
al
al
al
al
a1
al

421



o o o o ©o

® @ © © @ © ©

o @

Ald

® © © ¢ ©® © ©

e 6 ¢ © © © o

32835 OJUO X YSng

yoegs woij bb doy

§oels wosy Ay dod

yoeys wody Y dogd

1d1ou ‘piem 3 ‘indino yoo|g
1d1 ou ‘paem q ‘indino yog
u pod o} y indinp

(D) o4 J4ndinp

jeaday ‘paem } ‘indino yoojg
ieadas ‘piem,q 4ndino yoo|g
Voi(P+ADYOV

Vo (P+XD YOV

Voi(IH) 30 v

VOolujyov

voiido v

uoyesado oN

(sustuajdwiod s,0M}) ¥ ajebap
1eadal ‘piem,q peoj ¥o0ig

teadas ou ‘piem g ‘peoj ydoig

uondinseq

[ 10100t 11 | 10111011t ]

[ 1000011 | 1ottuin

| toooot L | totiont

[ 1100010t | tottoert]

[ ttototot | 1ottot11

[ w 11001011

100 + 10 | tortotrt ]

Lioottot | tottottt |

[ totton [ rotoni

OLIOLLOL fLottLLet

ottot1ot | Lotttott |

[ v Jououu]

00000000

Lootoooto | 1ottt |
{oooot 101 | totiottt ]
| ooootol | tottottt |

jeunog

Xt Hsnd
bb 40Od

Al dOd

X1 dOd
11no
aLno
v(u) Ino
#() 1IN0
310
3010
(P+ A ¥O
(P+X1) ¥O
(H) ¥0

u 30
130

dON

93N

EHa]

1a1

stucweuly

422



® © 2 © & & © 9 o ©

® & © o

v 4BjN241D 3] 91840y

(P A1) 1e[N211D 148] BiRj0Y
(P4 X1) sejn241> 43| B4R40Y
('1H) Jejn3a1d 440 8iejoy
1e[nDapd 1J3)] alejoy

Asied nayy 149] v 21840y

(P -+ Al) Ased nuyy 14| a4e40y
(P4 Al) Auied nayt 1y3| asejoy
(IH) Assed nays 439| a4eioy

1 Aied nuyi e ateioy

JUl B{GRYSPW-UOU OIS UINBY
idnuaaiur woiy uingay

PRl UECDQ-_QDm woiy wInNiay
2UINOIGNS WOLJ UINIaY

(P4 AD 30 9 11q 4955y
(P-+X1) 40 q 119 4353Y

(TH) 40 4 41q jesay

140 G g sesay

3oegs ojuo bb ysng

Foe4S OJUO Al Yshnd

11100000

[ 01100000 |

P

_:o_oo:. ottt

[ ot 100000 |

p

[ tiotcott [ rotttoni]

[ ot 100000 | 11010011

LLOLoOL L

[ ot1o0000 |

o

tiotoott | tototont |

[ ot101000 |

o

ttotoott | tottott

_o:o_ooo LLolootl

4 01000 | 11010011

10100010 | tottontt |

[ 10110010 | 1011011 ]

[tootoot1]

[ot1 a0t |

_:o_oo:_ T

[otiaon |

p

[ tiotoott | touitont |

[ott a ot ] trot00tt |
[+ aot] rowoont |

_o_og:_

_5_8_:, tortintt]

VO
(P+AD DN
P+X) O

(H) O
1O

A4l

P+AD 18
P+X) W
(H T

TR

Ni3¥

1133

2 134

138
(P+AlYq S3¥
(P+X1Yq s34
(HY9 s34
i'q $3y

bb Hgnd

Al HSNd

423




® © © 6 © ©

® & ©¢ © © ¢ ¢ © o ©

(<] ® © © ¢ © ©

® @ © o

@ 6 9 © o

Ald

®@ ® © © [ ® 6 © © © @

N @ 6 & © o

e © o o @ o ©¢ ¢ © © @

® © ¢ o o

w

TH 04 AD-S5-TH

Y 0 AD(P+ AV

v oL AD-(P+XI)>V

V 04 AD-(HFv

V O ADU-Y

VO ADY

d uoeI0| 04 JirisaY

(WH) 44611 uBip paq ajeioy
1e)n0u1d 1yB 'y ageioy
1e1ma1 yBu (p+ Al aiRi0y
12113 1yB1 (p 4 X]) iej0y
1ejnd41d 4461 (1H) 24040y
Jejnoad Jybils J ajejoy

Adres nuys 3ybii v agejoy
P+ A1) A2 nays 1oy siesoy
(P -+ X1) A2 nayy 3yBia ajejoy
(1K) Assed nuyy Jybis aiejoy
1 Asied nuyy 4B oy
(1H) 4431 4iB1p poqg sieioy

uondissoq

01005510 toLtotit |

oLL 1100t —o:::_

p

[ ottroor | totriort |

01111001

[ v Touon]

[ tiioottof 1ottornt ]

11110000

_ 01110000 _

©

LIOLOOLL | tOLtLEttt

["ott10000 |

©

L10100t 1 5:5:1_

| ottio000] tiotoott |
|+ 10000 | tiotoott |

Liti 1000

[ ottiiooo

LIOLOOLL | OLL L1000

[ otti1000

110100t | tottiont

01111000 | 101001 1

4 11000 | t1O100L1

LLL10LLO | LOtioLLt

joui0y

s$"1H DgS
(P+A'Y D8S
P+ XYY 28s
(HY'v o8s
u'y Das

Iy D8s

d 18y

a¥y

vouYy

P+ AD D¥Y
(P+x1) DYy
(H) Dy
TRt

vy

(P+AD ¥
(P+x1) ¥4
(1H) ¥y

sy

an

3juousouyy

424



@ © ©¢ 9 © ©¢ @ © © © © ¢ © & o

v o4 (1H)-V

v O} Uy

v oL 1y
andwLR 14B1 (P 4 A H14S
HawiLiR 1B (P + X1} HiYS
auswyILe B (TH) 1YS
182160} 4Bl 1 41y
suswyie 16U (P + Al) HI4S
dnowyse iyBu (P 4 X1) 41us
answye 4Bu (TH) HiuS
Juawyie 4B 4 HIYS
Suawyite 48| (P+ Al) HIYS
Suswyitie o) (P + X1) HIYS
suawyie 143) (TH) 44
JuBWIYLE 13| J 44YS

1409 uq4s8g

(P+ A1) 40 9 419 405

(P +X1) 40 q 419 428

(1H) 40 q 419 433

Bey Auied jog

fouo | P

[ottiiico T e

oLL10100
01110100

[ otit0100 | 1010011 |

410100 | 1101001

[otiooi00 | P

11010011 Ttotccint ]

[otioot00 [ P

110100t 1 | tottlotl

[ ot100100 | 11010011
100100 | 11010011
1 q 11101001t

[0t g u |

LLOLOO1 L | toLtiLtl

P
fortau [ p

| tiotoott | 1ottton

[ ott g 1] oioont
L1101100

(1H) ans

u ans

4 ans
(P+Al WS
(P+Xx1) WS
(OH) 138

L 1)
(P-+Al) VIS
(P+XI V4s
(H) Vs

4 vids
P+AD VI8
P+xN VI8
(H) vI8

LI A

¥q 138
(P+AINY 135
(P+Xx1)'9 13$
(HYq 138
408

425



v © 6 o o o o o

844 == UOIED0T :p[3Y 1GY

dS=¢ “H=C ‘30= ‘29 =0 1ed Jaisi6as

1 se swes 11935163

Ve=( =6 'H=¥ ‘=€ ‘A= ‘D=1 ‘g =0 49151621

dS=E¢€ ‘Al==¢ ‘3= DG =0 :ed sas51681 bb
dS=E€ ‘Ul=Z ‘A0 =1 DY =0 ed 1a4siBas dd
an|eA ssasppe 10 sjeipawwy U
9T~ O £T| + iuswade|dsip dwnf sAyejas o
dS=¢ “IH=¢ ‘3a=1 ‘D9=0 1ed JaysiBas pp
8Z1 — O} LZ| 4 suswade|dsip Buixapu) p
W={'d=9 dd=§ ‘Od=V

D=E'ON=C ‘Z=1 IN=0 P|3y uoyjpuod >
LOPPRYHG q
@ @ @ V 04 (P+ Al) 30 JAISNIOXI V
@ (] ® Y o4 (P 4+ X1) O 3AISNIDXI ¥
® (] @ V 04 (TH) 4O 3JAISNIDXI V
@ ] (] ¥ 01 U JO FAISNTOXI V
(-] @ @ V 0L A0 FAISMIDXE V
@ @ @ Vol (P+AlY
@ ® e Y 04 P+ X1}V

Ald z s uoydiseg

papayeun =
18s = |
josal = g
papsye = @

153P07) UOHIPUOD

SPjal4 uoHINILSU| HEN

[ » Totworol] ottt |

[ p Jottotot] rottion |
oL110101
| v Jouon
1 10101
P fottotoot [ rotitins
P Jotiotoot | totitott

jounog

(P+ Al ¥OX
P+ XD 30X
(1H) ¥OX

u JOX

1 40X
(P+AD B8NS
(P+X1) 8ns

sjuouieuly

426



INDEX

Absolute location 17, 52

Addition, assembly-language
112-122

Arguments, for macros 64
general 21, 22, 98, 111

Array storage of machine
code 110, 111

ASCII characters, general 22,
23,142, 185
working with 135-158

ASEG pseudo-op 66

Aspect ratio 189

Assembling, hand 86

Assembly, location counter
43, sequence 49

Backspacing, on input 145

BASIC, interfacing 94-98
address computation 105

Binary/hexadecimal
conversion 15

Binary search 173-176

Buffering, characters 295,
296

Breakpointing 83, 91

Bubble sort 180-183

Carries 117

Character positions 184, 190,
191

Characters, line printer 220

Checkpointing 410

Checksum 77

CHRS strings, embedding
machine code in 106-108

CLOSE l/O call 260

Coding 279, 280

Command file 87

Comment line 13

Comment field 13

Conditional assembly 68

Constants 42

Control codes 142

Coversion, ASCII
binary/hexadecimal 158
ASCII decimal to binary
153-155
binary to decimal ASCII
155-158

Cross-reference listing 69

CSEG pseudo-op 66

DATA statements,
embedding machine code
in 104-105, 108-111

DC pseudo-op 149

Debounce, keyboard 140, 293

DEBUG 90-93

Debugging 90-94, 281, 282

Decimal/binary conversion 15

Decimal/hexadecimal
conversion 15

DEFB pseudo-op 43, 44

DEFM pseudo-op 43-45

DEFS pseudo-op 45, 46

DEFW pseudo-op 43, 44

Delimiter 69

Desk checking 81, 82, 91, 280

Device control blocks (DCBs)
247-250

Displacement field 102

427



Display, of characters 148
of input characters 150
of message

Disk Assembler 53-74

Disk Assembler, edit
commands 56, 57
files 87
labels 62
loader 61, 62, 71-74
macros 62
using 70

Disk, characteristics 235-238
controller 241-245
device control blocks
247-250
drives 238-241
formatting 238
signals 240
TRSDOS I/O calls 251-263
TRSDOS organization
245-247

Disk files, for Disk
Assembler 55

Disk input/output 235-263

Divide operations, 127-130

DJNZ instruction 102

Dummy strings 108, 109

DUMP command 93

DSEG pseudo-op 66

Edit buffer 55

Editor 13, 38

EDTASM 37-52

Effective address 112

ENTRY pseudo-op 62

EQU pseudo-op 46, 47

Expressions 48

EXT pseudo-op 62

Fields 12

Flags 31, 32, 35, 41, 115, 122

Floating-point operations 134

Flowcharting 272, 273

428

Format differences, between
EDTASM and Disk
Assembler 54

Free format 39

Graphics, animation 199
codes 188
drawing patterns and
figures 197-201
line drawing 193-196,
203-210
processing 184-210
random points 202

Hamming code 266

Hand assembling 86

Hashing technique 401

Hexadecimal 15

Immediate value 28, 33

INIT 1/O call 256, 257

Input buffer 145

Input subroutines 144-147

Input/output programming
211-217

Input/output, address 213
cassette 221-227
cassette music 227-233
1/0 mapped 212-214
memory-mapped 215-217,
242
port addresses 214
printer 217-221

Instruction set 9-10

Instruction times 270

JR instructions 102

Keyboard, bounce 136, 137
scan 135-143

KILL I/O call 260

Listing 10, 60

Listing file 59

Loader, Disk Assembler
71-74

Location 17

Lower case 186



Machine code, embedding in
BASIC 99-111
general 11, 14, 99

Machine language 10, 13

Macros, Disk Assembler
62-65

Memory allocation 78-81,
87-89

Mnemonic 10, 11, 40, 41

Modulus operation 132

Morse Code Generator
Program 285-331

Multiple-precision operations
121,134

Multiply operations 123-126

Object code 50

Object file 77

Op code 12, 38

Operand 12

Operation code 12

Operators 48

OPEN VO call 251, 253, 254

ORG pseudo-op 42

Overflow 129, 130

Pages, Disk Assembler 58

Parameter list 98

Patching 83-87, 93

Periodicals, programming
268

Permutations 340-342

Pixels 189-192

Pointer 23

POSN V/O call 261-263

Preliminary specification
268-271

Printer input/output 217-221,
326

Program counter 18, 102

Program design 271-278

Program sections 54, 66

Pseudo-ops 38, 42

Pseudo-random number
generation 131

P/V flag 114, 115

Random number generation
130, 132, 321

Ranges, of lines 55

READ VO call, 254-256

Registers 23, 25

Relative location 17

Relocatability 50-52, 54, 61,
93, 99-103

Relocatable object file 59

Research 266-268

Restoring divide 127, 128

Scaling 205, 206

Scrolling, 150-152

Searching 173-176

SET/RESET 192

Shift and add multiply, 124,
125

Signed multiplies and divides
129

Simulating text 287

Single stepping 91

Sorting 177-183

Source code 11, 39

Source file, creating on Disk
Assembler 58
general 14, 55

Source line 59

Stack operations 18-20, 28,
78,79

Subcommands, Disk
Assembler editor 57

Subroutine 11, 17, 111

Subtract operations 116-122

Successive addition multiply
123

Successive subtract divide
127

Symbol table 28, 46

Symbolic code 10

Syntax, assembler 39-41
editor 38
input subroutine 144

429



SYSTEM tapes 75-78 Testing, 282

T-BUG 78, 81-86 Tic-Tac-Toe Program 333-410
Table size, automatic 168 Tone generation, through
Tables, fixed-length entry, cassette port 227-233, 291
fixed length 159-161 Trace 34
fixed-length entry, TRSDOS VO calls 251-263
variable length 162, 163 Two-buffer sort 177-180
jump 165-169 Unsigned multiplies and
ordered 172 divides 129
scanning 169-171 USR calls 94-97
searching 173-176 Word format 44, 45
sorting 177-183 WRITE I/O call 257, 258
variable-length entry, Z flag 21
variable length 164, 165 Z-809
working with 159-183 Z-80 registers 23, 25

430



5 i = e
A T

i

> lee=C

More TRS-80 Assembly Language Programming





